• Title/Summary/Keyword: Text Sentiment

Search Result 270, Processing Time 0.03 seconds

Sentiment analysis on movie review through building modified sentiment dictionary by movie genre (영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석)

  • Lee, Sang Hoon;Cui, Jing;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.97-113
    • /
    • 2016
  • Due to the growth of internet data and the rapid development of internet technology, "big data" analysis is actively conducted to analyze enormous data for various purposes. Especially in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of existing structured data analysis. Various studies on sentiment analysis, the part of text mining techniques, are actively studied to score opinions based on the distribution of polarity of words in documents. Usually, the sentiment analysis uses sentiment dictionary contains positivity and negativity of vocabularies. As a part of such studies, this study tries to construct sentiment dictionary which is customized to specific data domain. Using a common sentiment dictionary for sentiment analysis without considering data domain characteristic cannot reflect contextual expression only used in the specific data domain. So, we can expect using a modified sentiment dictionary customized to data domain can lead the improvement of sentiment analysis efficiency. Therefore, this study aims to suggest a way to construct customized dictionary to reflect characteristics of data domain. Especially, in this study, movie review data are divided by genre and construct genre-customized dictionaries. The performance of customized dictionary in sentiment analysis is compared with a common sentiment dictionary. In this study, IMDb data are chosen as the subject of analysis, and movie reviews are categorized by genre. Six genres in IMDb, 'action', 'animation', 'comedy', 'drama', 'horror', and 'sci-fi' are selected. Five highest ranking movies and five lowest ranking movies per genre are selected as training data set and two years' movie data from 2012 September 2012 to June 2014 are collected as test data set. Using SO-PMI (Semantic Orientation from Point-wise Mutual Information) technique, we build customized sentiment dictionary per genre and compare prediction accuracy on review rating. As a result of the analysis, the prediction using customized dictionaries improves prediction accuracy. The performance improvement is 2.82% in overall and is statistical significant. Especially, the customized dictionary on 'sci-fi' leads the highest accuracy improvement among six genres. Even though this study shows the usefulness of customized dictionaries in sentiment analysis, further studies are required to generalize the results. In this study, we only consider adjectives as additional terms in customized sentiment dictionary. Other part of text such as verb and adverb can be considered to improve sentiment analysis performance. Also, we need to apply customized sentiment dictionary to other domain such as product reviews.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

A Study on Effective Sentiment Analysis through News Classification in Bankruptcy Prediction Model (부도예측 모형에서 뉴스 분류를 통한 효과적인 감성분석에 관한 연구)

  • Kim, Chansong;Shin, Minsoo
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.187-200
    • /
    • 2019
  • Bankruptcy prediction model is an issue that has consistently interested in various fields. Recently, as technology for dealing with unstructured data has been developed, researches applied to business model prediction through text mining have been activated, and studies using this method are also increasing in bankruptcy prediction. Especially, it is actively trying to improve bankruptcy prediction by analyzing news data dealing with the external environment of the corporation. However, there has been a lack of study on which news is effective in bankruptcy prediction in real-time mass-produced news. The purpose of this study was to evaluate the high impact news on bankruptcy prediction. Therefore, we classify news according to type, collection period, and analyzed the impact on bankruptcy prediction based on sentiment analysis. As a result, artificial neural network was most effective among the algorithms used, and commentary news type was most effective in bankruptcy prediction. Column and straight type news were also significant, but photo type news was not significant. In the news by collection period, news for 4 months before the bankruptcy was most effective in bankruptcy prediction. In this study, we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.

Analysis of Business Performance of Local SMEs Based on Various Alternative Information and Corporate SCORE Index

  • HWANG, Sun Hee;KIM, Hee Jae;KWAK, Dong Chul
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.3
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: The purpose of this study is to compare and analyze the enterprise's score index calculated from atypical data and corrected data. Research design, data, and methodology: In this study, news articles which are non-financial information but qualitative data were collected from 2,432 SMEs that has been extracted "square proportional stratification" out of 18,910 enterprises with fixed data and compared/analyzed each enterprise's score index through text mining analysis methodology. Result: The analysis showed that qualitative data can be quantitatively evaluated by region, industry and period by collecting news from SMEs, and that there are concerns that it could be an element of alternative credit evaluation. Conclusion: News data cannot be collected even if one of the small businesses is self-employed or small businesses has little or no news coverage. Data normalization or standardization should be considered to overcome the difference in scores due to the amount of reference. Furthermore, since keyword sentiment analysis may have different results depending on the researcher's point of view, it is also necessary to consider deep learning sentiment analysis, which is conducted by sentence.

The Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Cho, Mina;Hwang, Dugmee;Jeon, Seongmin
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2022.04a
    • /
    • pp.123-126
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two important aspects of online reviews are first, the topics consumers choose to address and second, the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre-and post-pandemic periods. After performing topic modeling on Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. Also, the order and magnitude of topics' impact on review sentiment change between pre-and post-pandemic periods for both countries. This study can help businesses to understand how topics and sentiments associated with their products and services changed after pandemic, and also help them identify areas of improvement.

  • PDF

Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Mina Cho;Dugmee Hwang;SeongMin Jeon
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.514-536
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two crucial aspects of online reviews are the topics consumers choose to address, and the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we employ the Expectation-Confirmation Theory (ECT) to examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre- and post-pandemic periods. After applying a topic modeling to Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. In addition, the order and magnitude of topics' impact on review sentiment change between pre- and post-pandemic periods for both countries. This study can help businesses understand how topics and sentiments associated with their products and services changed after the pandemic and thus identify areas of improvement.

A study on cultural characteristics of foreign tourists visiting Korea based on text mining of online review (온라인 리뷰의 텍스트 마이닝에 기반한 한국방문 외국인 관광객의 문화적 특성 연구)

  • Yao, Ziyan;Kim, Eunmi;Hong, Taeho
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.171-191
    • /
    • 2020
  • Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.