본 연구에서는 최근 각광을 받고 있는 텍스트마이닝 기법인 LDA 토픽모델링과 이를 변형한 HDP 토픽모델링을 적용하여 국내 기록관리학의 연구동향을 분석하고자 한다. 이를 위해 국내 기록관리학 관련 학술지 2종과 문헌정보학 관련 학술지 4종에서 1997년부터 2016년까지 발표된 기록관리학 관련 논문 1,027건을 수집하고 적절한 전처리과정을 거친 후 LDA 토픽모델링과 HDP 토픽모델링을 각각 수행하였다. 또한 토픽모델링 시각화 도구인 LDAvis를 활용하여 토픽별 거리를 가시적으로 표현하고 세부 대표 키워드를 분석하였다. 두 토픽모델링을 비교한 결과, LDA 토픽모델링은 전반적으로 해당 도메인을 대표하는 주요 키워드로 빈도수에 영향을 많이 받았으며, HDP 토픽모델링은 각 토픽별 특징을 파악할 수 있는 특수한 키워드가 많이 도출되었다. 이를 통해 LDA는 국내 기록관리학 내에 거시적으로 대표되는 주제들을, HDP는 세부 주제별 미시적인 핵심 키워드를 도출하는데 효과적임을 알 수 있었다.
본 논문에서는 생의학 분야의 특정 세부 분야에 특화된 관계 추출 학습 말뭉치를 효율적으로 구축할 수 있는 시스템을 소개한다. 이 시스템은 대상 분야에 해당하는 용어집(유전자, 단백질, 질환 명칭 등)을 입력하면, 대용량 상호 작용 데이터베이스를 통해서 이들 용어 간의 연관 관계를 1차적으로 생성하고 생성된 연관 관계 집합을 다시 학술 데이터베이스에서 검색하여 최종적으로 연관 관계 포함 문장을 추출하는 형태로 수행된다. 개발된 시스템의 유용성 검증을 위해서 알츠하이머병 분야에서의 유전자 간 상호 작용 학습 말뭉치를 구축하는데 본 시스템을 적용하였고, 140개의 유전자 집합을 입력하여 이 분야에 특화된 학습 집합인 유전자 쌍 및 상호 작용 포함 문장 3,510 건을 추출하였다. 본 논문에서 제안한 시스템을 활용함으로써 기존에 완전 수작업으로 수행되던 연관 관계 추출용 학습 말뭉치 구축의 효율성을 높일 수 있고 다양한 세부 분야에 적합한 학습 말뭉치 구축에 도움을 줄 수 있다.
기술예측은 과거부터 현재까지의 기술개발 결과를 수집, 분석하여 특정 기술의 미래 추세 및 상태를 예측하는 것이다. 일반적으로 특허는 현재까지의 기술개발 결과를 가장 잘 가지고 있다. 왜냐하면 특허에 포함된 세부 기술은 일정기간 동안 배타적 권리가 법에 의해 보장되기 때문이다. 따라서 특허 데이터의 분석을 이용한 기술예측의 다양한 연구가 진행되었다. 특허문서의 분석을 위하여 널리 사용되는 특허 키워드 데이터는 주로 기술키워드에 대한 빈도 값으로 이루어진다. 기존의 많은 특허분석에서는 회귀분석, 박스-젠킨스 모형 등 연속형 데이터분석 기법이 적용하였다. 하지만 빈도 데이터는 이산형 데이터이기 때문에 이산형 데이터분석 방법을 사용해야 한다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여 베이지안 포아송 이산모형을 이용한 특허분석 방법을 제안한다. 연구방법의 성능평가를 위하여 지금까지 출원, 등록된 애플의 전체특허를 분석하여 향후 기술을 예측하는 사례분석을 수행한다.
이 연구에서는 용어 클러스터링을 이용하여 단일문서의 키워드를 추출하는 알고리즘을 제안하고자 한다. 단락단위로 분할한 단일문서를 대상으로 1차 유사도와 2차 분포 유사도를 산출하여 용어 클러스터링을 수행한 결과, 50단어 단락에서 2차 분포 유사도를 적용했을 때 가장 우수한 성능을 나타냈다. 이후, 용어 클러스터링결과를 이용하여 단일문서의 키워드를 추출하기 위해 단순빈도와 상대빈도의 조합을 통해 다양한 키워드 추출 공식을 도출, 적용한 결과, 단락빈도(pf)와 단어빈도$\times$역단락빈도($tf{\times}ipf$) 조건에서 가장 우수한 결과를 나타냈다. 이 결과를 통해, 본 연구에서 제안한 알고리즘은 좋은 키워드가 가져야 할 두 가지 조건인 주제성과 고른 빈도분포라는 측면에서 단일문서를 대상으로 효과적으로 키워드를 추출할 수 있음을 확인하였다.
불확실성이란 정보의 합의나 현존하는 지식 부족으로 인해 명제의 지식이 불완전한 상태를 의미한다. 과학적 지식의 불확실성을 연구하는 학술문헌의 양은 시간이 흐름에 따라 기하급수적으로 증가하고 있으며, 이에 따라 새로운 지식이 발견되고 연구가 발전하고 있다. 이처럼 시간의 흐름은 지식의 불확실성의 패턴을 발견하는데 중요한 요인이 될 수 있음에도 불구하고 기존의 연구들은 불확실성 단어의 단순 출현 빈도를 기반으로 특정 학문 영역에서 불확실성의 특성을 파악해왔다. 따라서, 본 연구에서는 구축한 불확실성 단어를 생의학 영역의 불확실성 연구에 적용하여 시간의 흐름에 따른 불확실성의 변화와 패턴을 파악하고자 한다. 시간의 흐름에 따른 생의학 지식의 패턴을 분석하기 위해 대표 개체 페어, 동사 유형, 대표 개체의 패턴을 살펴보았으며 선형회귀 분석을 통해 유의성 검증을 수행했다. 개체 페어 분석에서는 17건 중 7건의 개체 페어가 유의하게 감소하는 패턴을 보였다. 10개의 대표적인 동사 유형은 모두 시간이 흐름에 따라 유의하게 감소했다. 대표 개체의 연도별 상대적 중요도 분석에서는 유의하게 상승과 하강 패턴을 보이는 개체들의 불확실성 증감을 분석했다.
본 연구는 QR코드 주제 관련 뉴스의 보도 경향 분석을 위해 한국언론진흥재단의 빅카인즈에서 2008년부터 2023년까지 16년간의 뉴스 기사 데이터 13,335건을 수집하였다. 연간 및 주제별 보도량을 통해 양적 변화 추이를 살펴보고, 단어 빈도 분석을 실시하였으며, 동시 출현 단어를 활용한 네트워크 분석을 통해 시기별 주요 보도 내용을 분석하였다. 분석 결과는 다음과 같다. QR코드 관련 언론에서의 보도는 지속적으로 증가하였으며, 2020년에 보도량이 가장 많은 것으로 나타났다. 'IT·과학' 주제에서 가장 많이 보도되었으며, '스마트폰', '서비스', '애플리케이션', '결제' 등이 QR코드와 함께 주요 단어로 다뤄졌다. 연구 결과, 언론을 통해 QR코드의 정보 제공 및 전달, 정보의 인식 및 식별 기능이 부각 되었다. QR코드는 정보통신기술의 발달과 모바일 기기의 보편화에 따라 그 사용이 확대되었으며, 사회의 전반에서 대중적인 정보 매체로 활용되고 있는 것으로 나타났다.
본 글은 역사학, 그 중에서 한국사 연구에서 활용 가능한 빅데이터 분석 방법론을 모색하고, 이를 활용한 '디지털 역사학'의 가능성을 검토하는 것을 목적으로 한다. 방대한 '한국사 빅데이터'를 활용한 한국사 연구를 위해서는 기존의 질적분석 방법론뿐만 아니라 양적분석 방법론이 모색되어야 한다. 이를 위해서는 다양한 학문 분야와의 학제 간 융합연구가 요청된다. 본 글에서는 '한국사 빅데이터'를 활용한 다양한 융합연구의 출현을 고대하면서, 학제 간 융합연구의 연구방법론을 제안하고, 이를 적용한 연구의 한 사례를 소개하였다. 즉, 문장의 의미를 분석하는 텍스트 분석방법으로 '한국사 빅데이터'에서 원하는 정보를 추출한다면, 양적분석 방법론의 단점으로 지적되는 '행간의 의미읽기의 부재'를 점차 보완해 갈 수 있을 것이다. 그리고 이러한 방법론으로 구축한 데이터베이스를 바탕으로 준지도 학습(Semi-Supervised Learning) 방법론을 적용할 경우, 사료가 충분하지 않은 전근대 한국사의 역사적 인물과 사건들을 분석하는데 유용하게 활용될 것으로 기대된다. 분석 결과를 직관적으로 보여주는 시각화를 통해서도 평면적 연구에서 찾아내지 못한 역사적 사실들을 밝혀낼 수 있을 것이다. 이제 '디지털 역사학'의 서막이 오른 것이다.
본 연구의 목적은 소셜미디어 중 하나인 YouTube 동영상 사용자들이 남긴 의견을 추출하여 분석하는 질적연구방법을 제시한다. 이를 위해서 YouTube 동영상 사용자의견을 사용하여 사용과 충족 이론의 쾌락적 충족, 사회적 충족, 그리고 실용적 충족을 빈도분석과 토픽모델링을 통해 측정하였다. 측정결과, YouTube KBS 한국방송 채널 중 트로트 가수 조명섭 동영상을 사용자들이 시청하는 이유는 첫 번째로 높은 빈도를 보이는 것이 쾌락적 충족을 위해서였다. 다음 순으로 사회적 충족과 실용적 충족으로 나타났다. 단어-문서 네트워크 분석에서 연결정도중심성은 '응원', '감사', '화이팅', '최고' 등이 높게 나타났고, 매개중심은'감사', '응원', '화이팅'등의 단어가 높게 나타나 연결정도 중심성과 유사함을 보였다. 아이겐벡터중심성은 '사랑', '마음', '감사' 등의 단어가 높게 나타나 사용자들의 의견들에 가장 영향력이 높은 단어들임을 알 수 있다. 이는 YouTube의 트로트 가수 조명섭 동영상 시청자들 중 대다수가 동영상에 대해 사랑과 감사의 마음을 보이고 있음을 알 수 있다. 위의 세 가지 중심성 분석결과는 동영상을 시청하는 동기로 사용충족 이론의 쾌락적 충족과 사회적 충족 관련 단어들이 높은 값을 보이고 있다. 본 연구는 설문조사 기반의 구조방정식 모형을 따르지 않고, 질적분석연구를 자동화한 텍스트마이닝 기법을 사용하여 YouTube동영상을 사용하는 동기를 사용 및 충족 이론에 의해 밝혀냈다는 것에서 연구 함의를 찾을 수 있다.
빅데이터 분석은 오늘날 다양한 산업 및 공공분야에서 필수적으로 활용되고 있다. 이에 본 연구에서는 빅데이터 분석을 활용하여 국내 관광 서비스 개선 방안을 LDA분석 방법을 통해 모색하고자 한다. 특히 외국인 방문객이 가장 많은 서울을 중심으로 관광객의 만족도를 높이고 이를 통해 재방문을 향상시킬 수 있고 서비스를 개선할 수 있는 탐색적 접근을 시도하였다. 본 연구에서는 서울시와 한국관광공사의 통계 자료 및 SNS 등의 인터넷 정보들을 R을 통해 수집 및 분석을 진행하였다. 그리고 LDA를 포함한 텍스트 마이닝 기법을 활용하였다. 분석 결과 외국인들의 한국을 방문하는 목적 중 하나는 식도락 관광이었다. 이에 식도락 관광을 중심으로 서비스의 질을 높이기 위한 방안을 도출하고자 한다.
정보사회가 고도화됨에 따라 의견의 다양성과 복잡성이 증대되어 이들로 부터 중요한 이슈를 도출해내고 문제 상황을 정확하게 파악하여 대응하는 일이 더욱 어려워지고 있다. 이에 따라 교육계에서는 기존의 담론과 쟁점 이외에도 변화되는 사회에 발맞추어 새롭게 등장하는 이슈를 발굴하여 대응할 필요가 있다. 본 연구는 국민청원 게시판에 작성된 육아와 교육 카테고리의 글을 분석하여 교육계의 주된 이슈를 도출해 내고자 하였다. 텍스트 마이닝 방법 가운데 하나인 토픽모델링을 활용하여 분석한 결과, 현재 교육 분야의 주요 이슈를 교육 관련법, 대학입시, 교육 관련 범죄, 교육환경, 유·초등교육, 교원처우, 교육정책, 고등교육, 중등교육 등의 9개 주제로 구분할 수 있었고, 이들을 주제 간의 관계를 시각화하여 제시하였다. 본 연구는 국민들의 여론을 수집한 후 주제별로 구분하여 중요 이슈를 도출하였다는 점에서 의의를 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.