• Title/Summary/Keyword: Text Mining Analysis

Search Result 1,217, Processing Time 0.029 seconds

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

Analysis of domestic and foreign future automobile research trends based on topic modeling (토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로)

  • Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.463-476
    • /
    • 2022
  • After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

A Study on the Perception of Quality of Care Services by Care Workers using Big Data (빅데이터를 활용한 요양보호사의 서비스질 인식에 관한 연구)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2023
  • Background: This study was conducted to confirm the service quality management of care workers, who are direct service personnel of long-term care insurance for the elderly, using unstructured big data. Methods: Using a textome, this study collected and analyzed unstructured social data related to care workers' service quality. Frequency, TF-IDF, centrality, semantic network, and CONCOR analyses were conducted on the top 50 keywords collected by crawling the data. Results: As a result of frequency analysis, the top-ranked keywords were 'Long-term care services,' 'Care workers,' 'Quality of care services,' 'Long term care,' 'Long term care facilities,' 'Enhancement,' 'Elderly,' 'Treatment,' 'Improvement,' and 'Necessity.' The results of degree centrality and eigenvector centrality were almost the same as those of the frequency analysis. As a result of the CONCOR analysis, it was found that the improvement in the quality of long-term care services, the operation of the long-term care services, the long-term care services system, and the perception of the psychological aspects of the care workers were of high concern. Conclusion: This study contributes to setting various directions for improving the service quality of care workers by presenting perceptions related to the service quality of care workers as a meaningful group.

6G Technology Competitiveness and Network Analysis: Focusing on GaN Integrated Circuit Patent Data (6G의 기술경쟁력 및 네트워크 분석: GaN 집적회로 특허 데이터 중심)

  • Woo-Seok Choi;Jin-Yong Kim;Jung-Hwan Lee;Sang-Hyun Choi
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Expectations for wireless communication technology are rising as a base technology that promotes innovation in various industries in line with the paradigm of digital transformation in the 21st century beyond the stage of being used only for communication service itself. In this study, in order to compare 6G technological competitiveness between Korea and leading countries, technological competitiveness was confirmed through PFS, CPP, and network analysis based on GaN Integrated Circuit patent data. Korea's 6G technological competitiveness was 0.62 in PFS and 3.93 in CPP, which were 32.8% and 19.9%, respectively, compared to leading countries. In addition, as a result of network analysis, the collaboration rate in the 6G field was 7.2%, and the collaboration ecosystem was very insufficient in most countries. In contrast, it was confirmed that Korea, unlike leading countries, has established a small-scale collaboration ecosystem linked by industry and academia. Thus, it is necessary to establish a strategy for 6G communication technology at the national level so that communication technology can be advanced based on a relatively well-established collaborative ecosystem.

Open-Ended Response Analysis for University Course Evaluations using Topic Modeling (토픽 모델링을 활용한 대학 강의평가 개방형 응답분석)

  • Su-Hyun Ahn;Sang-Jun Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.539-547
    • /
    • 2023
  • In recent years, university education has emphasized a learner-centered education model with a change in educational paradigm. This study aims to explore students' diverse opinions and improve the quality of education by analyzing the open-ended responses of university lecture evaluations using topic modeling. To this end, a total of 45,001 open-ended responses based on the results of lecture evaluations from 2017 to 2022 in non-metropolitan universities were divided into majors and liberal arts, and a short-form optimized Biterm Topic Modeling (BTM) analysis was conducted. As a result of the analysis, major lectures were divided into "attitude toward non-face-to-face classroom experience", "attitude toward questions and discussions", "attitude toward attendance and grading", "attitude toward practical activities and presentations", and "attitude toward communication and collaboration", while liberal arts lectures were divided into "attitude toward non-face-to-face classroom experience", "attitude toward grades and evaluations", "attitude toward attendance and syllabus", "attitude toward academic knowledge and interest", and "attitude toward communication and questions". The results of this study, which analyzed various feedback from students, provide insights that can be used to compare the characteristics of majors and liberal arts courses and improve teaching and learning experiences.

Maritime Safety Tribunal Ruling Analysis using SentenceBERT (SentenceBERT 모델을 활용한 해양안전심판 재결서 분석 방법에 대한 연구)

  • Bori Yoon;SeKil Park;Hyerim Bae;Sunghyun Sim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.843-856
    • /
    • 2023
  • The global surge in maritime traffic has resulted in an increased number of ship collisions, leading to significant economic, environmental, physical, and human damage. The causes of these maritime accidents are multifaceted, often arising from a combination of crew judgment errors, negligence, complexity of navigation routes, weather conditions, and technical deficiencies in the vessels. Given the intricate nuances and contextual information inherent in each incident, a methodology capable of deeply understanding the semantics and context of sentences is imperative. Accordingly, this study utilized the SentenceBERT model to analyze maritime safety tribunal decisions over the last 20 years in the Busan Sea area, which encapsulated data on ship collision incidents. The analysis revealed important keywords potentially responsible for these incidents. Cluster analysis based on the frequency of specific keyword appearances was conducted and visualized. This information can serve as foundational data for the preemptive identification of accident causes and the development of strategies for collision prevention and response.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

A Method for Evaluating News Value based on Supply and Demand of Information Using Text Analysis (텍스트 분석을 활용한 정보의 수요 공급 기반 뉴스 가치 평가 방안)

  • Lee, Donghoon;Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.45-67
    • /
    • 2016
  • Given the recent development of smart devices, users are producing, sharing, and acquiring a variety of information via the Internet and social network services (SNSs). Because users tend to use multiple media simultaneously according to their goals and preferences, domestic SNS users use around 2.09 media concurrently on average. Since the information provided by such media is usually textually represented, recent studies have been actively conducting textual analysis in order to understand users more deeply. Earlier studies using textual analysis focused on analyzing a document's contents without substantive consideration of the diverse characteristics of the source medium. However, current studies argue that analytical and interpretive approaches should be applied differently according to the characteristics of a document's source. Documents can be classified into the following types: informative documents for delivering information, expressive documents for expressing emotions and aesthetics, operational documents for inducing the recipient's behavior, and audiovisual media documents for supplementing the above three functions through images and music. Further, documents can be classified according to their contents, which comprise facts, concepts, procedures, principles, rules, stories, opinions, and descriptions. Documents have unique characteristics according to the source media by which they are distributed. In terms of newspapers, only highly trained people tend to write articles for public dissemination. In contrast, with SNSs, various types of users can freely write any message and such messages are distributed in an unpredictable way. Again, in the case of newspapers, each article exists independently and does not tend to have any relation to other articles. However, messages (original tweets) on Twitter, for example, are highly organized and regularly duplicated and repeated through replies and retweets. There have been many studies focusing on the different characteristics between newspapers and SNSs. However, it is difficult to find a study that focuses on the difference between the two media from the perspective of supply and demand. We can regard the articles of newspapers as a kind of information supply, whereas messages on various SNSs represent a demand for information. By investigating traditional newspapers and SNSs from the perspective of supply and demand of information, we can explore and explain the information dilemma more clearly. For example, there may be superfluous issues that are heavily reported in newspaper articles despite the fact that users seldom have much interest in these issues. Such overproduced information is not only a waste of media resources but also makes it difficult to find valuable, in-demand information. Further, some issues that are covered by only a few newspapers may be of high interest to SNS users. To alleviate the deleterious effects of information asymmetries, it is necessary to analyze the supply and demand of each information source and, accordingly, provide information flexibly. Such an approach would allow the value of information to be explored and approximated on the basis of the supply-demand balance. Conceptually, this is very similar to the price of goods or services being determined by the supply-demand relationship. Adopting this concept, media companies could focus on the production of highly in-demand issues that are in short supply. In this study, we selected Internet news sites and Twitter as representative media for investigating information supply and demand, respectively. We present the notion of News Value Index (NVI), which evaluates the value of news information in terms of the magnitude of Twitter messages associated with it. In addition, we visualize the change of information value over time using the NVI. We conducted an analysis using 387,014 news articles and 31,674,795 Twitter messages. The analysis results revealed interesting patterns: most issues show lower NVI than average of the whole issue, whereas a few issues show steadily higher NVI than the average.

Identifying Landscape Perceptions of Visitors' to the Taean Coast National Park Using Social Media Data - Focused on Kkotji Beach, Sinduri Coastal Sand Dune, and Manlipo Beach - (소셜미디어 데이터를 활용한 태안해안국립공원 방문객의 경관인식 파악 - 꽃지해수욕장·신두리해안사구·만리포해수욕장을 대상으로 -)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.5
    • /
    • pp.10-21
    • /
    • 2018
  • This study used text mining methodology to focus on the perceptions of the landscape embedded in text that users spontaneously uploaded to the "Taean Travel"blogpost. The study area is the Taean Coast National Park. Most of the places that are searched by 'Taean Travel' on the blog were located in the Taean Coast National Park. We conducted a network analysis on the top three places and extracted keywords related to the landscape. Finally, using a centrality and cohesion analysis, we derived landscape perceptions and the major characteristics of those landscapes. As a result of the study, it was possible to identify the main tourist places in Taean, the individual landscape experience, and the landscape perception in specific places. There were three different types of landscape characteristics: atmosphere-related keywords, which appeared in Kkotji Beach, symbolic image-related keywords appeared in Sinduri Coastal Sand Dune, and landscape objects-related appeared in Manlipo Beach. It can be inferred that the characteristics of these three places are perceived differently. Kkotji Beach is recognized as a place to appreciate a view the sunset and is a base for the Taean Coast National Park's trekking course. Sinduri Coastal Sand Dune is recognized as a place with unusual scenery, and is an ecologically valuable space. Finally, Manlipo Beach is adjacent to the Chunlipo Arboretum, which is often visited by tourists, and the beach itself is recognized as a place with an impressive appearance. Social media data is very useful because it can enable analysis of various types of contents that are not from an expert's point of view. In this study, we used social media data to analyze various aspects of how people perceive and enjoy landscapes by integrating various content, such as landscape objects, images, and activities. However, because social media data may be amplified or distorted by users' memories and perceptions, field surveys are needed to verify the results of this study.