• Title/Summary/Keyword: Text Label

Search Result 66, Processing Time 0.021 seconds

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Text Region Detection Method Using Table Border Pseudo Label (표의 테두리 유사 라벨을 활용한 문자 영역 검출 방법)

  • Han, Jeong Hoon;Park, Se Jin;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1271-1279
    • /
    • 2020
  • Text region detection is a technology that detects text area in handwriting or printed documents. The detected text areas are digitized through a recognition step, which is used in various fields depending on the purpose of use. However, the detection result of the small text unit is not suitable for the industrial field. In addition, the border of tables in the document that it causes miss-detected results, which has an adverse effect on the recognition step. To solve the issues, we propose a method for detecting text region using the border information of the table. In order to utilize the border information of the table, the proposed method adjusts the flow of two decoders. Experimentally, we show improved performance using the table border pseudo label based on weak supervised learning.

Label Restoration Using Biquadratic Transformation

  • Le, Huy Phat;Nguyen, Toan Dinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Recently, there has been research to use portable digital camera to recognize objects in natural scene images, including labels or marks on a cylindrical surface. In many cases, text or logo in a label can be distorted by a structural movement of the object on which the label resides. Since the distortion in the label can degrade the performance of object recognition, the label should be rectified or restored from deformations. In this paper, a new method for label detection and restoration in digital images is presented. In the detection phase, the Hough transform is employed to detect two vertical boundaries of the label, and a horizontal edge profile is analyzed to detect upper-side and lower-side boundaries of the label. Then, the biquadratic transformation is used to restore the rectangular shape of the label. The proposed algorithm performs restoration of 3D objects in a 2D space, and it requires neither an auxiliary hardware such as 3D camera to construct 3D models nor a multi-camera to capture objects in different views. Experimental results demonstrate the effectiveness of the proposed method.

A Method of Calculating Topic Keywords for Topic Labeling (토픽 레이블링을 위한 토픽 키워드 산출 방법)

  • Kim, Eunhoe;Suh, Yuhwa
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.25-36
    • /
    • 2020
  • Topics calculated using LDA topic modeling have to be labeled separately. When labeling a topic, we look at the words that represent the topic, and label the topic. Therefore, it is important to first make a good set of words that represent the topic. This paper proposes a method of calculating a set of words representing a topic using TextRank, which extracts the keywords of a document. The proposed method uses Relevance to select words related to the topic with discrimination. It extracts topic keywords using the TextRank algorithm and connects keywords with a high frequency of simultaneous occurrence to express the topic with a higher coverage.

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

Text Region Detection using Adaptive Character-Edge Map From Natural Image (자연영상에서 적응적 문자-에지 맵을 이용한 텍스트 영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1135-1140
    • /
    • 2007
  • This paper proposes an edge-based text region detection algorithm using the adaptive character-edge maps which are independent of the size of characters and the orientation of character string in natural images. First, labeled images are obtained from edge images and in order to search for characters, adaptive character-edge maps by way grammar are applied to labeled images. Next, selected label images are clustered as for distance of its neighbors. And then, text region candidates are obtained. Finally, text region candidates are verified by using the empirical rules and horizontal/vertical projection profiles based on the orientation of text region. As the results of experiments, a text region detection algorithm turned out to be robust in the matter of various character size, orientation, and the complexity of the background.

  • PDF

Wine Label Recognition System using Image Similarity (이미지 유사도를 이용한 와인라벨 인식 시스템)

  • Jung, Jeong-Mun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.125-137
    • /
    • 2011
  • Recently the research on the system using images taken from camera phones as input is actively conducted. This paper proposed a system that shows wine pictures which are similar to the input wine label in order. For the calculation of the similarity of images, the representative color of each cell of the image, the recognized text color, background color and distribution of feature points are used as the features. In order to calculate the difference of the colors, RGB is converted into CIE-Lab and the feature points are extracted by using Harris Corner Detection Algorithm. The weights of representative color of each cell of image, text color and background color are applied. The image similarity is calculated by normalizing the difference of color similarity and distribution of feature points. After calculating the similarity between the input image and the images in the database, the images in Database are shown in the descent order of the similarity so that the effort of users to search for similar wine labels again from the searched result is reduced.

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.

An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning (기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.37-62
    • /
    • 2018
  • This study examined the factors affecting the performance of automatic classification based on machine learning for domestic journal articles in the field of LIS. In particular, In view of the classification performance that assigning automatically the class labels to the articles in "Journal of the Korean Society for Information Management", I investigated the characteristics of the key factors(weighting schemes, training set size, classification algorithms, label assigning methods) through the diversified experiments. Consequently, It is effective to apply each element appropriately according to the classification environment and the characteristics of the document set, and a fairly good performance can be obtained by using a simpler model. In addition, the classification of domestic journals can be considered as a multi-label classification that assigns more than one category to a specific article. Therefore, I proposed an optimal classification model using simple and fast classification algorithm and small learning set considering this environment.