• 제목/요약/키워드: Text Extraction

검색결과 459건 처리시간 0.025초

깊은 신경망 기반 대용량 텍스트 데이터 분류 기술 (Large-Scale Text Classification with Deep Neural Networks)

  • 조휘열;김진화;김경민;장정호;엄재홍;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.322-327
    • /
    • 2017
  • 문서 분류 문제는 오랜 기간 동안 자연어 처리 분야에서 연구되어 왔다. 우리는 기존 컨볼루션 신경망을 이용했던 연구에서 나아가, 순환 신경망에 기반을 둔 문서 분류를 수행하였고 그 결과를 종합하여 제시하려 한다. 컨볼루션 신경망은 단층 컨볼루션 신경망을 사용했으며, 순환 신경망은 가장 성능이 좋다고 알려져 있는 장기-단기 기억 신경망과 회로형 순환 유닛을 활용하였다. 실험 결과, 분류 정확도는 Multinomial Naïve Bayesian Classifier < SVM < LSTM < CNN < GRU의 순서로 나타났다. 따라서 텍스트 문서 분류 문제는 시퀀스를 고려하는 것 보다는 문서의 feature를 추출하여 분류하는 문제에 가깝다는 것을 확인할 수 있었다. 그리고 GRU가 LSTM보다 문서의 feature 추출에 더 적합하다는 것을 알 수 있었으며 적절한 feature와 시퀀스 정보를 함께 활용할 때 가장 성능이 잘 나온다는 것을 확인할 수 있었다.

스마트제조를 위한 머신러닝 기반의 설비 오류 발생 패턴 도출 프레임워크 (A Machine Learning Based Facility Error Pattern Extraction Framework for Smart Manufacturing)

  • 윤준서;안현태;최예림
    • 한국전자거래학회지
    • /
    • 제23권2호
    • /
    • pp.97-110
    • /
    • 2018
  • 4차 산업혁명 시대를 맞아, 제조 기업들은 생산성 향상을 위해 축적된 설비 데이터를 활용하여 스마트제조를 실현하는 것에 높은 관심을 두고 있다. 하지만 기존의 설비 데이터 분석 연구들은 주로 센서 데이터 등 정형 데이터를 대상으로 하여, 실제 큰 비중을 차지하고 있는 텍스트와 같은 비정형 데이터에 대한 분석 연구는 부족한 실정이다. 특히, 작업자가 수기로 작성한 텍스트 데이터를 활용한 사례는 매우 적었다. 따라서 본 논문에서는 작업자가 수기로 작성한 설비 오류 데이터를 분석하여 연관 규칙 마이닝을 통해 설비 오류 발생 패턴을 도출하는 프레임워크를 제안하고자 한다. 이때, 일반적인 텍스트 분석 기법과 같이 단어를 분석 기준으로 사용하는 경우 전문 용어에 해당하는 설비 오류의 의미를 표현하는 데에 한계가 있다는 점에 착안하여 구절을 추출하여 텍스트 분석 기준으로 사용하였다. 제안하는 프레임워크의 성능을 실제 사례를 통해 검증하였으며, 본 연구 결과를 활용하면 설비 오류를 예방하여 가동률을 높이고 나아가 제조 기업의 생산성 향상에 기여할 수 있을 것으로 기대한다.

Airbnb 숙소 유형에 따른 호스트의 자기소개 텍스트가 공유성과에 미치는 영향 (Impact of Self-Presentation Text of Airbnb Hosts on Listing Performance by Facility Type)

  • 심지환;김소영;정여진
    • 지식경영연구
    • /
    • 제21권4호
    • /
    • pp.157-173
    • /
    • 2020
  • 최근 빠르게 성장하고 있는 숙박 공유경제 시장에서 품질에 대한 불확실성은 사용자의 만족도에 영향을 미치는 위험요소지만, 이는 시설 제공자가 공개하는 정보를 통해 완화될 수 있다. 그 중 시설 제공자의 본인에 대한 자기소개는 사용자와의 정서적 교류를 통해 심리적 거리를 제거함으로써 공유 성과에 긍정적 영향을 미친다. 본 연구는 대표적인 숙박공유경제 플랫폼인 Airbnb에서 호스트의 자기소개가 포함하는 정보의 종류에 따라 공유성과에 미치는 영향을 분석하고, Airbnb의 숙소 유형에 따라 차이를 분석하였다. 이를 위해 호스트가 공개하는 자기소개 텍스트를 문장별로 분리하고 비지도 학습기반의 딥러닝 방법인 Attention-Based Aspect Extraction 방법을 활용하여 각 문장이 포함하는 의미를 추출하였다. 추출된 의미를 토대로 자기소개 텍스트가 포함하는 의미가 공유성과에 미치는 영향과 숙소 유형에 따른 교호작용 효과를 분석하였다. 연구결과, 숙소 유형별로 호스트의 특정 성향이 공유성과에 긍정적인 영향을 미치는 것을 확인하였고, 이를 통해 숙소 유형에 따라 공유성과를 극대화하기 위한 마케팅 전략에 대한 실증적인 함의를 제공한다.

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

A Study of Main Contents Extraction from Web News Pages based on XPath Analysis

  • Sun, Bok-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2015
  • Although data on the internet can be used in various fields such as source of data of IR(Information Retrieval), Data mining and knowledge information servece, and contains a lot of unnecessary information. The removal of the unnecessary data is a problem to be solved prior to the study of the knowledge-based information service that is based on the data of the web page, in this paper, we solve the problem through the implementation of XTractor(XPath Extractor). Since XPath is used to navigate the attribute data and the data elements in the XML document, the XPath analysis to be carried out through the XTractor. XTractor Extracts main text by html parsing, XPath grouping and detecting the XPath contains the main data. The result, the recognition and precision rate are showed in 97.9%, 93.9%, except for a few cases in a large amount of experimental data and it was confirmed that it is possible to properly extract the main text of the news.

Joint Hierarchical Semantic Clipping and Sentence Extraction for Document Summarization

  • Yan, Wanying;Guo, Junjun
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.820-831
    • /
    • 2020
  • Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.

Metadata Processing Technique for Similar Image Search of Mobile Platform

  • Seo, Jung-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2021
  • Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.

관계 추출 데이터를 이용한 그래프-투-텍스트 생성 (Graph-to-Text Generation Using Relation Extraction Datasets)

  • 양기수;장윤나;이찬희;서재형;장환석;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.597-601
    • /
    • 2021
  • 주어진 정보를 자연어로 변환하는 작업은 대화 시스템의 핵심 모듈임에도 불구하고 학습 데이터의 제작 비용이 높아 공개된 데이터가 언어에 따라 부족하거나 없다. 이에 본 연구에서는 텍스트-투-그래프(text-to-graph) 작업인 관계 추출에 쓰이는 데이터의 입출력을 반대로 지정하여 그래프-투-텍스트(graph-to-text) 생성 작업에 이용하는 역 관계 추출(reverse relation extraction, RevRE) 기법을 소개한다. 이 기법은 학습 데이터의 양을 늘려 영어 그래프-투-텍스트 작업의 성능을 높이고 지식 묘사 데이터가 부재한 한국어에선 데이터를 재생성한다.

  • PDF

위치적 연관성과 어휘적 유사성을 이용한 웹 이미지 캡션 추출 (Web Image Caption Extraction using Positional Relation and Lexical Similarity)

  • 이형규;김민정;홍금원;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.335-345
    • /
    • 2009
  • 이 논문은 웹 문서의 이미지 캡션 추출을 위한 방법으로서 이미지와 캡션의 위치적 연관성과 본문과 캡션의 어휘적 유사성을 동시에 고려한 방법을 제안한다. 이미지와 캡션의 위치적 연관성은 거리와 방향 관점에서 캡션이 이미지에 상대적으로 어떻게 위치하고 있는지를 나타내며, 본문과 캡션의 어휘적 유사성은 이미지를 설명하고 있는 캡션이 어휘적으로 본문과 어느 정도 유사한지를 나타낸다. 이미지와 캡션을 독립적으로 고려한 자질만을 사용한 캡션 추출 방법을 기저 방법으로 놓고 제안하는 방법들을 추가적인 자질로 사용하여 캡션을 추출하였을 때, 캡션 추출 정확률과 캡션 추출 재현율이 모두 향상되며, 캡션 추출 F-measure가 약 28% 향상되었다.

문서 영상 내 테이블 영역에서의 단어 추출 (Word Extraction from Table Regions in Document Images)

  • 정창부;김수형
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.369-378
    • /
    • 2005
  • 문서 영상은 문서 구조 분석을 통하여 텍스트, 그림, 테이블 등의 세부 영역으로 분할 및 분류되는데, 테이블 영역에 있는 단어는 다른 영역의 단어보다 의미가 있기 때문에 주제어 검색과 같은 응용 분야에서 중요한 역할을 한다. 본 논문에서는 문서 영상의 테이블 영역에 존재하는 문자 성분을 단어단위로 추출하는 방법을 제안한다. 테이블 영역에서의 단어 추출은 실질적으로 테이블을 구성하는 셀 영역에서 단어를 추출하는 것이기 때문에 정확한 셀 추출 과정이 필요하다. 셀 추출은 연결 요소를 분석하여 테이블 프레임을 찾아내고, 교차점 검출은 전체가 아닌 테이블 프레임에 대해서만 수행한다. 잘못 검출된 교차점은 이웃하는 교차점과의 관계를 이용하여 수정하고, 최종 교차점 정보를 이용하여 셀을 추출한다. 추출된 셀 내부에 있는 텍스트 영역은 셀 추출 과정에서 분석한 문자성분의 연결 요소 정보를 재사용하여 결정하고, 결정된 텍스트 영역은 투영 프로파일을 분석하여 문자연로 분리된다. 마지막으로 분리된 문자열에 대하여 갭 군집화와 특수 기호 검출을 수행함으로써 단어 분리를 수행한다. 제안 방법의 성능 평가를 위하여 한글 논문 영상으로부터 추출한 총 In개의 테이블 영상에 대해 실험한 결과, $99.16\%$의 단어 추출 성공률을 얻을 수 있었다.