• Title/Summary/Keyword: Text Document

Search Result 669, Processing Time 0.027 seconds

Document Layout Analysis Based on Fuzzy Energy Matrix

  • Oh, KangHan;Kim, SooHyung
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, we describe a novel method for document layout analysis that is based on a Fuzzy Energy Matrix (FEM). A FEM is a two-dimensional matrix that contains the likelihood of text and non-text and is generated through the use of Fuzzy theory. The key idea is to define an Energy map for the document to categorize text and non-text. The proposed mechanism is designed for execution with a low-resolution document image, and hence our method has a fast processing speed. The proposed method has been tested on public ICDAR 2009 datasets to conduct a comparison against other state-of-the-art methods, and it was also tested with Korean documents. The results of the experiment indicate that this scheme achieves superior segmentation accuracy, in terms of both precision and recall, and also requires less time for computation than other state-of-the-art document image analysis methods.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

Case Study on Public Document Classification System That Utilizes Text-Mining Technique in BigData Environment (빅데이터 환경에서 텍스트마이닝 기법을 활용한 공공문서 분류체계의 적용사례 연구)

  • Shim, Jang-sup;Lee, Kang-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1085-1089
    • /
    • 2015
  • Text-mining technique in the past had difficulty in realizing the analysis algorithm due to text complexity and degree of freedom that variables in the text have. Although the algorithm demanded lots of effort to get meaningful result, mechanical text analysis took more time than human text analysis. However, along with the development of hardware and analysis algorithm, big data technology has appeared. Thanks to big data technology, all the previously mentioned problems have been solved while analysis through text-mining is recognized to be valuable as well. However, applying text-mining to Korean text is still at the initial stage due to the linguistic domain characteristics that the Korean language has. If not only the data searching but also the analysis through text-mining is possible, saving the cost of human and material resources required for text analysis will lead efficient resource utilization in numerous public work fields. Thus, in this paper, we compare and evaluate the public document classification by handwork to public document classification where word frequency(TF-IDF) in a text-mining-based text and Cosine similarity between each document have been utilized in big data environment.

  • PDF

Implementation of Text Summarize Automation Using Document Length Normalization (문서 길이 정규화를 이용한 문서 요약 자동화 시스템 구현)

  • 이재훈;김영천;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.51-55
    • /
    • 2001
  • With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-Line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task. Information retrieval(IR) is the task of searching a set of documents for some query-relevant documents. On the other hand, text summarization is considered to be the task of searching a document, a set of sentences, for some topic-relevant sentences. In this paper, we show that document information, that is more reliable and suitable for query, using document length normalization of which is gained through information retrieval . Experimental results of this system in newspaper articles show that document length normalization method superior to other methods use query itself.

  • PDF

Automatic Text Categorization using the Importance of Sentences (문장 중요도를 이용한 자동 문서 범주화)

  • Ko, Young-Joong;Park, Jin-Woo;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.6
    • /
    • pp.417-424
    • /
    • 2002
  • Automatic text categorization is a problem of assigning predefined categories to free text documents. In order to classify text documents, we have to extract good features from them. In previous researches, a text document is commonly represented by the frequency of each feature. But there is a difference between important and unimportant sentences in a text document. It has an effect on the importance of features in a text document. In this paper, we measure the importance of sentences in a text document using text summarizing techniques. A text document is represented by features with different weights according to the importance of each sentence. To verify the new method, we constructed Korean news group data set and experiment our method using it. We found that our new method gale a significant improvement over a basis system for our data sets.

A Study on the Feasibility of Full-Text Information Retrieval System Based on Document Content Structure (문헌의 내용단위구조에 의한 전문검색시스템의 타당성 고찰)

  • Lee Byeong-Ki
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.129-154
    • /
    • 1998
  • In these days the online full-text database are increasing, but conventional full-text information retrieval system has been proved with high recall ratio and low precision ratio. One of the disadvantages of full-text IR system is that it is not designed to reflect the user's information need it is due to the fact that full-text IR system has been designed based on physical and logical structure of document without considering the content of document. Therefore, the purpose of the study examined feasibility of document content structure in full-text IR system by resolving such disadvantages of conventional system. 180 Journal articles have been analyzed to find common structure of document content and finally general model of the structure of journal articles were developed. The result shows that have relation to between user's cogntive schema structure, user's information need and contents structure of document. Thus it is concluded that full-text IR system need to be designed by using document content structure in order to meet user's information need more effectively.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Joint Hierarchical Semantic Clipping and Sentence Extraction for Document Summarization

  • Yan, Wanying;Guo, Junjun
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.820-831
    • /
    • 2020
  • Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.

Table Detection from Document Image using Vertical Arrangement of Text Blocks

  • Tran, Dieu Ni;Tran, Tuan Anh;Oh, Aran;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Table detection is a challenging problem and plays an important role in document layout analysis. In this paper, we propose an effective method to identify the table region from document images. First, the regions of interest (ROIs) are recognized as the table candidates. In each ROI, we locate text components and extract text blocks. After that, we check all text blocks to determine if they are arranged horizontally or vertically and compare the height of each text block with the average height. If the text blocks satisfy a series of rules, the ROI is regarded as a table. Experiments on the ICDAR 2013 dataset show that the results obtained are very encouraging. This proves the effectiveness and superiority of our proposed method.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.