• Title/Summary/Keyword: Tetrahedral

Search Result 432, Processing Time 0.042 seconds

Kinetics and Mechanism of the Aminolysis of O-Methyl-S-Phenylthiocarbonates in Methanol

  • Song, Ho-Bong;Choi, Moon-Ho;Koo, In-Sun;Oh, Hyuck-Keun;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.91-94
    • /
    • 2003
  • Kinetic studies of the reaction of O-methyl-S-phenylthiocarbonates with benzylamines in methanol at 45.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$, with a hydrogen-bonded four-center type transition state (TS). These mechanistic conclusions are drawn based on (ⅰ) the large magnitude of ${\rho}_X\;and\;{\rho}_Z$, (ⅱ) the normal kinetic isotope effects $(k_H/k_D\;>\;1.0)$ involving deuterated benzylamine nucleophiles, (ⅲ) the positive sign of ${\rho}_{XZ}$ and the larger magnitude of ${\rho}_{XZ}$ than that for normal $S_N2$ processes, and lastly (ⅳ) adherence to the reactivity-selectivity principle (RSP) in all cases.

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile

  • Koh, Han-Joong;Kang, Suk-Jin;Kim, Cheol-Ju;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.925-930
    • /
    • 2003
  • Kinetic studies of the reaction of Z-aryl cyclopropanecarboxylates with X-pyridines in acetonitrile at 55.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$. These mechanistic conclusions are drawn base on (i) the large magnitude of ρx and ρz, (ii) the positive sign of ρxz and the larger magnitude of ρxz than normal $S_N2$ processes, (iii) a small positive enthalpy of activation, Δ$H^≠$, and a large negative, Δ$S^≠$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Calculation of the Dipole Moments for Tetrahedral and Square Planar $[M(II)N_2S_2]$ Type Complexes [M(Ⅱ) = Ni(Ⅱ), Co(Ⅱ), Cu(Ⅱ) or Zn(Ⅱ)] (사면체 및 사각형 $[M(II)N_2S_2]$ 형태 착물의 쌍극자 모멘트의 계산 [M(II) = Ni(II), Co(II), Cu(II) 또는 Zn(II)])

  • Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1979
  • The dipole moments for square planar and tetrahedral $[M(II)N_2S_2]$ type complexes are calculated, using the expansion method for spherical harmonics [M(II) = Co(II), Ni(II), Cu(II) or Zn(II)]. The calculated values of the dipole moments for these complexes are in the range of the experimental values. The possible structures for these complexes in benzene solution are discussed on the basis of the calculated dipole moments and the the magnetic properties.

  • PDF

Electronic structure studies of CoFeRO (R=Hf,La,Nb) thin films by X-ray absorption spectroscopy

  • Song, J.H.;Gautam, S.;Chae, K.H.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.378-378
    • /
    • 2010
  • We report the electronic structure of CoFeO-R (R=Hf, La, Nb) thin films studied by x-ray absorption spectroscopy (XAS). These ferrites thin films were prepared by pulsed laser deposition method and characterized by XAS measurements at O K-, Co and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of transition metal cations and Fe $L_{3,2}$-edge spectra indicate that Fe-ions exist in $Fe^{2+}$ with tetrahedral site of the spinel structure. Divalent Co ions is also distributed in tetrahedral site with rare earth ions goes to octahedral sites of spinel structure. X-ray magnetic circular dichroism (XMCD) is also used to explain the symmetry and magnetic nature dependence on rare-earth ions.

  • PDF

Cross-interaction Constants in the Nucleophilic Reactions of Carbonyl Compounds Involving a Tetrahedral Intermediate

  • Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.985-990
    • /
    • 1994
  • Cross-interaction constants, ${\rho}^e_{XY}$, ${\rho}_{YZ}$ and ${\rho}_{XZ}$ are defined using observed rate constant, k_N=(k_1/k_{-1})k_2=Kk_2$, for the stepwise carbonyl addition reactions involving the rate-limiting breakdown of a tetrahedral intermediate $(T^{\pm})$. Abundant experimental evidence in the literature enables us to determine signs for the three constants for such mechanism, ${\rho}^e_{XY}$>0, ${\rho}_{YZ}$<0 and ${\rho}_{XZ}$0. These are in contrast to those for the concerted $S_N2$ mechanism, ${\rho}_{XY}$<0, ${\rho}_{YZ}$>0 and ${\rho}_{XZ}$, and provide useful mechanistic criteria. In the light of these criteria, mechanisms of some nucleophilic reactions of carbonyl compounds are re-examined.

Theoretical Studies on the Acyl Transfer Reactions Involving a Tetrahedral Intermediate$^\dag$

  • 이도영;김창곤;이본수;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1203-1208
    • /
    • 1995
  • Theoretical studies of the effect of the nonleaving group (RY) on the breakdown mechanism of the tetrahedral anionic intermediate, T-, formed by the addition of a less basic phenoxide nucleophile (X) to phenyl benzoates with a more basic phenoxide leaving group (Z) have been carried out using the PM3 MO method. The identity acyl transfer reactions (X=Z) are facilitated by an electron-withdrawing RY whereas they are inhibited by an electron-donating RY group. The results of non-identity acyl transfer reactions indicate that a more electron-donating RY group leads to a greater lowering of the higher barrier, TS2, with a greater degree of bond cleavage, and a greater negative charge development on the phenoxide oxygen atom, whereas the opposite is true for a more electron-withdrawing RY group, i.e., leads to a greater lowering of the lower barrier, TS1. The results provide theoretical basis for the signs of ρXY(>0) and ρYZ(<0) observations.

The Pseudocontact Shift for a $3d^9$ System in a Strong Crystal Field Environment of Tetragonally Distorted Tetrahedral Symmetry

  • Kim, Dong-Hee;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.618-625
    • /
    • 1991
  • A general expression adopting a nonmultipole expansion method is derived for pseudocontact contribution to the NMR chemical shift arising from the electron orbital angular momentum and electron spin dipolar-nuclear spin angular momentum interaction of $3d^9$ system in a strong crystal field of tetragonally distorted tetrahedral symmetry. From this expression all the multipolar term are determined and the exact solution of ${\Delta}$B/B(ppm) is compared with the multipolar term. The $1/R^5$ term in the multipolar terms contributes dominantly to the NMR chemical shift but the other terms are certainly significant except that of the <111> axis. In addition, an analysis of the temperature dependence of the NMR chemical shift further illustrates that considerable care must be taken in interpeting NMR results in paramagnetic system.

STRAUM-MATXST: A code system for multi-group neutron-gamma coupled transport calculation with unstructured tetrahedral meshes

  • MyeongHyeon Woo;Ser Gi Hong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4280-4295
    • /
    • 2022
  • In this paper, a new multi-group neutron-gamma transport calculation code system STRAUM-MATXST for complicated geometrical problems is introduced and its development status including numerical tests is presented. In this code system, the MATXST (MATXS-based Cross Section Processor for SN Transport) code generates multi-group neutron and gamma cross sections by processing MATXS format libraries generated using NJOY and the STRAUM (SN Transport for Radiation Analysis with Unstructured Meshes) code performs multi-group neutron-gamma coupled transport calculation using tetrahedral meshes. In particular, this work presents the recent implementation and its test results of the Krylov subspace methods (i.e., Bi-CGSTAB and GMRES(m)) with preconditioners using DSA (Diffusion Synthetic Acceleration) and TSA (Transport Synthetic Acceleration). In addition, the Krylov subspace methods for accelerating the energy-group coupling iteration through thermal up-scatterings are implemented with new multi-group block DSA and TSA preconditioners in STRAUM.

Effects of Cr Doping on Magnetic Properties of Inverse Spinel CoFe2O4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Park, Jae-Yun
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.51-54
    • /
    • 2006
  • Variation of magnetic properties through Cr substitution for Co in inverse-spinel $CoFe_2O_4$ has been investigated by vibrating-sample magnetometry (VSM) and conversion electron $M\ddot{o}ssbauer$ spectroscopy (CEMS). $Cr_{x}Co_{1-x}Fe_2O_4$ samples were prepared as thin films by a sol-gel method. The lattice constant of the $Cr_{x}Co_{1-x}Fe_2O_4$ samples was found to remain unchanged, explainable in terms of a reduction of tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$ due to substitution of $Cr^{3+}$ ion into octahedral $Co^{2+}$ site. The existence of the tetrahedral $Fe^{2+}$ ions in $Cr_{x}Co_{1-x}Fe_2O_4$ was confirmed by CEMS analysis. Room-temperature magnetic hysteresis curves for the $Cr_{x}Co_{1-x}Fe_2O_4$ films measured by VSM revealed that the saturation magnetization $M_s$ increases by Cr doping. The $M_s$ is maximized when x = 0.1 and decreases for higher x but is still bigger than that of $CoFe_2O_4$. The increase of $M_s$ can be explained partly by the reduction of the tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$.