DOI QR코드

DOI QR Code

Cross-interaction Constants in the Nucleophilic Reactions of Carbonyl Compounds Involving a Tetrahedral Intermediate

  • Published : 1994.11.20

Abstract

Cross-interaction constants, ${\rho}^e_{XY}$, ${\rho}_{YZ}$ and ${\rho}_{XZ}$ are defined using observed rate constant, k_N=(k_1/k_{-1})k_2=Kk_2$, for the stepwise carbonyl addition reactions involving the rate-limiting breakdown of a tetrahedral intermediate $(T^{\pm})$. Abundant experimental evidence in the literature enables us to determine signs for the three constants for such mechanism, ${\rho}^e_{XY}$>0, ${\rho}_{YZ}$<0 and ${\rho}_{XZ}$0. These are in contrast to those for the concerted $S_N2$ mechanism, ${\rho}_{XY}$<0, ${\rho}_{YZ}$>0 and ${\rho}_{XZ}$, and provide useful mechanistic criteria. In the light of these criteria, mechanisms of some nucleophilic reactions of carbonyl compounds are re-examined.

Keywords

References

  1. Adv. Phys. Org. Chem. v.27 Lee, I.
  2. J. Phys. Org. Chem. v.5 Lee, I.
  3. J. Chem. Soc., Perkin Trans. v.2 Lee, I.;Shim, C. S.;Lee, H. W.
  4. J. Phys. Org. Chem. v.7 Lee, I.;Park, Y. G.;Huh, C.;Lee, H. W.
  5. Reactivity in Oganic Chemistry Klumpp, G. W.
  6. Frontier Orbitals and Organic Chemical Reactions Fleming, I.
  7. Orbital Interactions in Chemistry Albright, T. A.;Burdett, J. K.;Whangbo, M-H.
  8. Theory of Orientation and Stereoselection Fukui, K.
  9. Structural Theory of Organic Chemistry Epiotis, N. D.;Cherry, W. R.;Shaik, S.;Yates, R.;Bernardi, F.
  10. J. Chem. Soc., Perkin Trans. v.2 Bond, P. M.;Castro, E. A.;Moodie, R. B.
  11. J. Am. Chem. Soc. v.99 Gresser, M. J.;Jencks, W. P.
  12. J. Org. Chem. v.45 Castro, E. A.;Freudenberg, M.
  13. J. Org. Chem. v.46 Castro, C.;Castro, E. A.
  14. J. Chem. Soc., Perkin Trans. v.2 Castro, E. A.;Steinfort, C. B.
  15. J. Org. Chem. v.50 Castro, E. A.;Santander, C. L.
  16. J. Org. Chem. v.54 Castro, E. A.;Ureta, C.
  17. J. Org. Chem. v.55 Castro, E. A.;Ureta, C.
  18. J. Chem. Soc., Perkin Trans. v.2 Castro, E. A.;Ureta, C.
  19. J. Chem. Res. Castro, E. A.;Ibanez, F.;Saitua, A. M.;Santos, J. G.
  20. J. Am. Chem. Soc. v.113 Inagaki, S.;Goto, N.;Yoshikawa, K.
  21. J. Chem. Soc., Perkin Trans. v.2 Oh, H. K.;Shin, C. H.;Lee, I.
  22. J. Chem. Res. Lee, I.;Choi, M. S.;Lee, H. W.
  23. J. Am. Chem. Soc. v.94 Menger, F. M.;Smith, J. H.
  24. J. Org. Chem. v.51 Shawali, A. S.; Harhash, A.;Sidky, M. M.;Hassaneen, H. M.;Elkaabi, S. S.
  25. J. Chem. Res. Lee, I.;Shim, C. S.;Lee, H. W.
  26. Oh, H. K.;Shin, C. H.;Lee, I
  27. J. Phys. Org. Chem. v.7 Lee, B. C. Yoon, J. H.;Lee, C. G.;Lee, I.
  28. J. Chem. Soc., Perkin Trans. v.2 Lee, I.;Shim, C. S.;Chung, S. Y.;Lee, H. W.
  29. J. Phys. Org. Chem. v.2 Lee, I.;Shim, C. S.;Lee, H. W.
  30. Bull. Korean Chem. Soc. v.9 Lee, I.;Kim, I. C.
  31. J. Chem. Soc., Perkin Trans. 2 Lee, I.;Shim, C. S.;Chung, S. Y.;Kim, H. Y.;Lee, H. W.
  32. Bull. Korean Chem. Soc. v.10 Lee, I.;Hong, S. W.;Park, J. H.
  33. J. Am. Chem. Soc. v.73 Winstein, S.;Grunwald, E.;Jones, H. W.
  34. Solvolytic Displacement Reactions Streitwieser, A.
  35. Nucleophilic Substitution at a Saturated Carbon Atom Bunton, C. A.
  36. J. Am. Chem. Soc. v.109 Yousaf, T. I.;Lewis, E. S.
  37. Prog. Phys. Org. Chem. v.15 Shaik, S. S.
  38. J. Chem. Soc. Perkin Trans. 2 McLennon, D.;Pross, A.
  39. J. Am. Chem. Soc. v.106 Carrion, F.;Dewar, M. J. S.
  40. J. Org. Chem. v.51 Bach, R. D.;Coddens, B. A.;Wolber, G. J.

Cited by

  1. Nucleophilic substitution reactions of cinnamoyl chlorides with anilines in acetonitrile and acetonitrile–methanol mixtures vol.1995, pp.12, 1994, https://doi.org/10.1039/p29950002257
  2. Kinetics and mechanism of the aminolysis of p-nitrophenyl N-phenylcarbamates vol.10, pp.10, 1994, https://doi.org/10.1002/(sici)1099-1395(199710)10:10<725::aid-poc943>3.0.co;2-x
  3. Kinetics and mechanism of the pyridinolysis of benzenesulfonyl chlorides in methanol vol.12, pp.6, 1994, https://doi.org/10.1002/(sici)1099-1395(199906)12:6<425::aid-poc147>3.0.co;2-3
  4. Nucleophilic Substitution Reactions of Thiophenyl 4-Nitrobenzoates with Pyridines in Acetonitrile vol.64, pp.13, 1994, https://doi.org/10.1021/jo990115p
  5. Transition-State Variation in the Nucleophilic Substitution Reactions of Aryl Bis(4-methoxyphenyl) Phosphates with Pyridines in Acetonitrile vol.67, pp.7, 1994, https://doi.org/10.1021/jo0162742
  6. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclobutanecarboxylates in Acetonitrile vol.23, pp.5, 1994, https://doi.org/10.5012/bkcs.2002.23.5.715
  7. Nucleophilic Substitution Reactions of Aryl Dithioacetates with Pyridines in Acetonitrile vol.67, pp.11, 1994, https://doi.org/10.1021/jo025637a
  8. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile vol.24, pp.7, 1994, https://doi.org/10.5012/bkcs.2003.24.7.925
  9. Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State vol.24, pp.7, 2003, https://doi.org/10.5012/bkcs.2003.24.7.993
  10. Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State vol.24, pp.7, 2003, https://doi.org/10.5012/bkcs.2003.24.7.993
  11. Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State vol.24, pp.7, 2003, https://doi.org/10.5012/bkcs.2003.24.7.993
  12. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 1994, https://doi.org/10.5012/bkcs.2004.25.2.203
  13. Nucleophilic Substitution Reactions of α-Chloroacetanilides with Pyridines in Dimethyl Sulfoxide vol.26, pp.5, 1994, https://doi.org/10.5012/bkcs.2005.26.5.776
  14. Kinetic Studies on the Structure-Reactivity Correlation of Aryl N-Phenyl Thioncarbamates vol.27, pp.1, 1994, https://doi.org/10.5012/bkcs.2006.27.1.143
  15. Nucleophilic Substitution Reactions of α-Bromoacetanilides with Benzylamines vol.29, pp.1, 1994, https://doi.org/10.5012/bkcs.2008.29.1.191