• Title/Summary/Keyword: Tetragonal structure

Search Result 346, Processing Time 0.023 seconds

Structural Study of Tetragonal-Ni1-xPdxSi/Si (001) Using Density Functional Theory (DFT) (Density Functional Theory (DFT)를 이용한 Tetragonal-Ni1-xPdxSi/Si (001)의 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.482-485
    • /
    • 2008
  • Tetragonal-$Ni_{1-x}Pd_x$Si/Si (001) structure was studied by using density functional theory (DFT). An epitaxial interface between $2{\times}2{\times}4$ (001) tetragonal-NiSi supercell and $1{\times}1{\times}2$ (001) Si supercell was first constructed by adjusting the lattice parameters of B2-NiSi structure to match those of the Si structure. We chose Ni atoms as a terminating layer of the B2-NiSi; the equilibrium gap between the tetragonal-NiSi and Si was calculated to be 1.1 ${\AA}$. The Ni atoms in the structure moved away from the original positions along the z-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The two Ni sites at the interface have 6 and 7 coordination numbers. The Ni sites with coordination number 6 at the interface were located farther away from the interface, and were more favorable for Pd substitution.

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF

An Study on the Structure of Maghemite(${\gamma}$-Fe$_2$O$_3$) I -Rietveld Analysis of Powder XRD Patterns- (마게마이트(${\gamma}$-Fe$_2$O$_3$)대한 연구 I -분말 X-선 회절무늬의 Rietveld 분석-)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1113-1119
    • /
    • 1998
  • Crystal structure of needle-shaped maghemite(${\gamma}$-{{{{ { {Fe }_{2 }O }_{3 } }}) has been studied by the Rieveld analysis of powder X-ray diffraction patterns. The tetragonal space group P41,.3212 and cubic space group P41,.32 have been have been used for the refinement of X-ray diffraction patterns. The crystal system of maghemite is closed to tetragonal more than cubic. The tetragonal lattice parameters are a=8.3460$\AA$ and c=25.034$\AA$ The standard X-ray diffraction pattern of the tetragonal maghemite analyzed with space group P41,.3212 is proposed.

  • PDF

Ferroelectric Domain Structure and Array of Tetragonal and Rhombohedral Phase in PZT Ceramics at MPB Composition (상경계 PZT 세라믹스의 강유전 분역구조 및 정방정상과 능면체정상의 공간적 배열)

  • 천채일;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.919-924
    • /
    • 1993
  • Domain structure and the spatial arrangement of tetragonal and rhombohedral phases in PZT ceramics at MPB composition were investigated with a transmission electron microscope. Fringe Contrast and doublet spot splitting were observed in the image mode and the selected area diffraction pattern, respectively. Besides, triplet spot splitting was also observed in the other part of the specimen. These observations indicate that both the single phase regions and the regions which are comosed of alternatively arranged tetragonal and rhombohedral domains coexist in a PZT ceramics at the MPB composition.

  • PDF

An Study on the Structure of Maghemite(${\gamma}$-Fe$_2$O$_3$) II -Lattice Energy Computation and Crystal Structure Analysis- (마게마이트(${\gamma}$-Fe$_2$O$_3$)의 구조에 대한 연구II -격자에너지 계산과 결정구조해석-)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1182-1189
    • /
    • 1998
  • Crystal structure and structural stability of needle-shaped maghemite(${\gamma}$-{{{{ { {Fe }_{2 }O }_{3 } }}) have been studied by the computation and estimation of lattice energies interionic distances and site potentials. The refined struc-tures analyzed with cubic system(space group P4332) and tetragonal system(space group P4332) were used for these computations. The lattice energy of tetragonal system is -143.10eV/molecule. The maghemite structure with tetragonal system is more stable than that with cubic system. The ordering energy of the FE and cation vacancy within the octahedral site the 4b site of the structure with cubic system(space group P4332) is -0.95eV/molecule but this Fe has larger interionic distance and is very unstable.

  • PDF

Structural Study of Interface Layers in Tetragonal-NiSi (010)/Si using Density Functional Theory (밀도범함수를 이용한 정방정계-NiSi (010)/Si 계면 층의 구조 연구)

  • Kim, Dae-Hee;Kim, Dae-Hyun;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.377-381
    • /
    • 2009
  • Tetragonal-NiSi (010)/Si superstructures were calculated for studying the interface structure using density functional theory, The orthorhombic-NiSi was changed to the tetragonal-NiSi to be matched with the Si surface for epitaxy interface. The eight interface models were produced by the type of the Si surfaces, The tetragonal-NiSi (010)/Si (020)[00-1] superstructure was energetically the most favorable, and the interface thickness of this superstructure was the shortest among the tetragonal-NiSi (010)/Si superstructures. However, in the case of tetragonal-NiSi (010)/Si (010)[00-1] superstructure, it was energetically the most unfavorable, and the interface thickness was the longest. The energies and interface thicknesses of tetragonal-NiSi (010)/Si superstructures were influenced by the coordination number of Ni atoms and the bond length between atoms located at the interface.

SUPPRESSION OF THE TETRAGONAL DISTORTION IN THIN Pb(Zr, Ti)$O_3$/MgO(100)

  • Kang, H.C.;Noh, D.Y.;Je, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.141-153
    • /
    • 1997
  • The paraelectric cubic-to-ferroelectric tetragonal phase transition of the thin Pb(Zr, Ti)$O_3$ (PZT) films grown on MgO(001) substrate was investigated in a series of synchrotron x-ray scattering experiments. As the thickness of the film decreases the transition temperature and the amount of the tetragonal distortion were decreased continuously Different from only the c-domains were existent in the thinnest 25nm thick film. Based on this we propose a model for the domain structure of the tetragonal PZT/MgO(100) film that is very different from the ones suggested in literature. We attribute the suppression of the transition to the substrate field that prefers the c-type domains near the interface and suppresses the tetragonal distortion to minimize the film-substrate lattice mismatch.

  • PDF

The Structure Determination of La2/3-xLi3x1/3-2xTiO3 by the Powder Neutron and X-ray Diffraction

  • Kang, Eun-Tae;Kwon, Young-Jean
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.513-518
    • /
    • 2003
  • La/sub 2/3-x/Li/sub 3x/□/sub 1/3-2x/TiO₃ compounds with x=0.13 and 0.12 were prepared by slow cooling (x=0.13) and rapid quenching (x=0.12) into the liquid nitrogen after sintering at 1350℃ for 6 h. Their crystal structure has been determined by Rietveld refinement of both the powder neutron and X-ray diffraction data. From neutron diffraction data, we found that the main phase was not tetragonal (P4/mmm), but trigonal (R3cH). The refinement of neutron diffraction for the slow cooled samples were in a good agreement with a new model; a mixture of trigonal (R3cH, 45.7 wt%), tetragonal (p4/mmm, 37.0 wt%), and Li/sub 0.57/Ti/sub 0.86/O₂(pbnm, 17.2 wt%), but the quenched sample was found not to contain tetragonal (p4/mmm). X-ray diffraction data couldn't be well fitted because of the Poor scattering factor of lithium ions and the similar reflection patterns among trigonal (R3cH), tetragonal (p4/mmm), and cubic (Pm3m). We also knew that one transport bottlenecks is destroyed by one La vacancy in the case of trigonal (R3cH).

Properties of Bi-2223/Ag HTS tapes using different content of precursors (조성이 다른 전구체 분말에 따른 Bi-2223/Ag 초전도 테이프의 특성 변화)

  • Ha, Dong-Woo;Yang, Joo-Saeng;Ha, Hong-Soo;Oh, Sang-Soo;Hwang, Sun-Yuk;Lee, Dong-Hoon;Choi, Jung-Kyu;Lee, En-Yong;Kwon, Young-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.69-72
    • /
    • 2003
  • Bi-2223 superconducting wires were fabricated by stacking, drawing process with different precursor powders and different heat-treatment histories. The precursor powders were 2 kinds of Pb content. And a part of the tapes were experienced pre-annealing process which caused tetragonal structure of Bi-2212 phase to orthorhombic structure of it was during drawing process. We confirmed the transformation of Bi-2212 phase from tetragonal structure to orthorhombic structure and reduction of second phases. XRD and DC magnetization analysis were performed in order to investigate the fraction of Bi-2223 phase in Bi-2223/Ag HTS tape. We could achieve best Ic of 70 A class at the Bi-2223/Ag tape using low Pb content of precursor powder and experienced pre-annealing process. DC magnetization analysis was useful to investigate the fraction of Bi-2223 phase in the Bi-2223/Ag tape.

  • PDF

Structural Study of Epitaxial NiSi on Si (001) Substrate by Using Density Functional Theory (DFT) (DFT를 이용한 Si (001) 기판의 에피택시 NiSi 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.65-68
    • /
    • 2007
  • An epitaxial NiSi structure on Si (001) substrate was studied by using density functional theory (DFT). Orhorhombic and B2-NiSi structures were compared first. B2 structure was further considered as it has same crystal structure as Si and the lattice mismatch between B2 and Si is small, compared to orthorhombic-NiSi. The lattice parameters of x- and y-direction in B2-NiSi structure were modified to match with those in Si (001). The size reduction of the lattice parameter of B2-NiSi to match with that of Si increased the lattice parameter of z-direction by 10.5%. Therefore, we propose that an optimum structure of NiSi for epitaxial growth on Si (001) is a tetragonal structure.

  • PDF