• 제목/요약/키워드: Tetragonal $BaTiO_3$

검색결과 79건 처리시간 0.023초

졸-겔법에 의한 티탄산 바륨 분말 합성 (The Synthesis of $BaTiO_3$ Powder by Sol-Gel Process)

  • 도길명;김일출;박대욱
    • 대한화학회지
    • /
    • 제37권1호
    • /
    • pp.92-97
    • /
    • 1993
  • 졸-겔법은 양질의 유리와 결정화 유리를 합성할 수 있는 새로운 방법이다. 알코올 용액에서 $Ba(OG)_$ 와 Ti[OCH(CH_3)_2]$를 반응시켜 강유전성 물질인 티탄산 바륨 분말을 합성하였다. 이 분말을 열중량 분석한 결과 전체적으로 약 16.5%의 중량 감소가 있었다. $700^{\circ}C$에서 2시간 동안 열처리하여 정방정의 티탄산 분말을 얻었으며 이때 비표면적이 $16.0m^2/g$였다. 소결에 의한 수축을 측정한 결과 $1100^{\circ}C$ 부근에서 시작되었다.

  • PDF

BT-BNT계에서 (Bi0.5Na0.5)TiO3 첨가에 따른 효과 (Effect According to Additive (Bi0.5Na0.5)TiO3 in BT-BNT System)

  • 이미재;백종후;김세기;김빛남;이우영;이경희
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.35-40
    • /
    • 2009
  • Lead free positive temperature coefficient of resistivity (PTCR) ceramics based on $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ solid solution were prepared by a conventional solid state reaction method. The phase structure was showed single phase with perovskite structure regardless calcinations temperature and $Ba_{1-x}(Bi_{0.5}Na_{0.5})_xTiO_3$ structure was transformed from tetragonal to orthorhombic phase at $x{\geq}0.15$ mole. The XRD peaks with $45^{\circ}{\sim}46^{\circ}$ shifted in right the influence of crystal structure change and the intensity of peak was decreased with additive $(Bi_{0.5}Na_{0.5})TiO_3$. The curie temperature risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but disappeared for $(Bi_{0.5}Na_{0.5})TiO_3$ addition more than 0.15 mole in TMA. In relative permittivity, the curie temperature by the transform of ferroelectric phase risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but decreased in relative permittivity. Also, the peak of new curie temperature showed the sample containing $0.025{\sim}0.045$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ near $70^{\circ}C$ caused by phase transform from ferroelectric to ferroelectric and the peak of new curie temperature disappeared at 0.045 mole of $(Bi_{0.5}Na_{0.5})TiO_3$. In our study, it was found that the PTCR in $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ system was possible for $0{\sim}0.025$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ and the maximum curie temperature by phase transition showed about at $145^{\circ}C$.

비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성 (Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics)

  • 류정호;정대용
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

나노입자로 제조된 $BaTiO_3$ 유전체에서 첨가물질에 따른 전기적 특성 평가

  • 우덕현;윤만순;어순철;손용호;권순용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.84-84
    • /
    • 2009
  • $BaTiO_3$는 perovskite 구조를 가지는 대표적인 강유전체 재료로서 MLCC (Multi Layer Ceramic Capacitor), PTC thermistor등에 널리 사용되어지고 있다. 최근 고용량 MLCC의 상업화와 함께 나노크기를 갖는 tetragonal phase의 $BaTiO_3$ 입자를 합성하기 위한 다양한 제조방법이 제시되고 있다. 또한 유전특성과 온도특성 및 신뢰성을 향상시키기 위해 많은 첨가제들이 연구되어지고 있다. 따라서 본 연구에서는 희토류 원소인 $Y_2O_3$를 첨가하여 유전특성 및 온도특성을 향상시키고자 하였다. 본 실험에서는 150nm 크기를 갖는 pure $BaTiO_3$ 분말을 사용하고 $Y_2O_3$의 양은 0.02 ~ 0.1wt%로 변수를 주어 첨가하였으며, 최적의 소결 조건을 찾기 위하여 1200, 1230, $1250^{\circ}C$에서 소결을 진행하였다. 실험방법으로는 균일한 혼합을 위하여 Iso-alcohol을 이용하여 48시간 ball-mill 하였으며 오븐에서 건조 후 ${\Phi}15$로 성형하여 소결을 진행하였다. 실험결과로는 $Y_2O_3$ 첨가량이 0.02wt% 부터 상온부터 상전이 온도 부근의 유전율 기울기는 완만해 지는 것을 확인할 수 있었으며, 소결시편의 정방정비 (tetragonality)도 뚜렷하게 나타났다. $Y_2O_3$ 첨가랑이 0.1 wt% 일 때는 첨가량의 증가로 인해 강유전성이 상쇄됨을 나타냈다. 이는 $2450^{\circ}C$에 이르는 매우 높은 용융온도와 $2350^{\circ}C$까지 상전이가 는 $Y_2O_3$를 미량 첨가할 때, 고온에서 높은 화학적 안정성과 내열성을 가져 온도 안정성이 향상된 것으로 판단된다.

  • PDF

수정합성공정에 의한 무연 (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) 세라믹의 PTCR 특성 연구 (Investigation on PTCR Characteristics of (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) Ceramics by Modified Synthesis Process)

  • 김경범;김창일;정영훈;이영진;백종후;이우영;김대준
    • 한국전기전자재료학회논문지
    • /
    • 제23권12호
    • /
    • pp.929-935
    • /
    • 2010
  • $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.01{\leq}x{\leq}0.10$) ceramics were fabricated with muffled sintering by a modified synthesis process. Their positive temperature coefficient of resistivity (PTCR) characteristics were investigated systematically. All specimen showed a perovskite structure with a tetragonal symmetry. Both the lattice parameter of a and c axes were slightly decreased with increasing $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) content. Grain growth was achieved when the incorporated BNT was increased to 6 mol% and the inhibition of grain growth is considered to be due to the appearance of Ba vacancy ($V^{"}_{Ba}$) in the $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.08{\leq}x$). With 4 mol% BNT addition, room temperature resistivity decreased to $48 \Omega{\cdot}cm$ and a resistivity jump ($\rho_{max}/\rho_{min}$) was as high as $1.1{\times}10^4$, respectively. Curie temperature was also increased to $171^{\circ}C$ with increasing BNT content.

무연계 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 세라믹의 상전이 거동과 압전 특성 (Phase Transitional Behavior and Piezoelectric Properties of 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 Lead-free Ceramics)

  • 차유정;남산;정영훈;이영진;백종후
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.766-771
    • /
    • 2009
  • Lead-free $0.94(Na_{0.5}K_{0.5})NbO_3$-0.06Ba$(Ti_{0.9}Sn_{0.1})O_3$ [0.94NKN-0.06BTS] ceramics doped with 1 mol% $MnO_2$ were synthesized by a conventional solid state method. The phase transitional behavior and piezoelectric properties of the ceramics sintered at various temperatures were investigated. The 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$, having morphotropic phase boundary of orthorhombic and tetragonal phases, exhibited a microstructure with abnormal grain growth. A diffused phase transition behavior for all the specimens was verified as high degree of diffuseness (${\gamma}$) values from 1.45 to 1.79. A high piezoelectric constant of $d_{33}=256$ pC/N and a satisfactory electromechanical coupling factor of $k_p=42%$ were obtained for the relatively dense 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$.

비납계 (Bi0.5Na0.5)TiO3-BaTiO3 강유전 세라믹 재료의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties Of Lead-free (Bi0.5Na0.5)TiO3-BaTiO3 Ferroelectric Ceramics)

  • 국민호;김명호;조정아;성연수;송태권;배동식;정순종;송재성
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.683-689
    • /
    • 2005
  • The structural, piezoelectric and ferroelectric properties of $(1-x)(Bi_{0.5}Na_{0.5})TiO_3$ x=0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) ceramics were investigated. A gradual change in the crystal and microstructures with tile increase of $BaTiO_3$ (BT) concentration was observed. The $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) samples show unusual properties as ferroelectric relaxer materials. We observed a phase transition in BNT solid solutions with BT having normal ferroelectric phase transition. At room temperature, BNT presents a single phase without the morphotropic phase boundary (MPB). In the case of samples doped with $4\~8 mol\%$ BT, rhombohedral-tetragonal MPB was formed and the piezoelectric properties were improved.

Structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films for the application of electro-caloric devices

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Choi, Seungkeun
    • Journal of Ceramic Processing Research
    • /
    • 제20권4호
    • /
    • pp.395-400
    • /
    • 2019
  • This study was conducted on the structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films prepared by the sol-gel and spin-coating methods in order to investigate their applicability to electrocaloric devices. All specimens showed a tetragonal crystal structure and lattice constants of a = 3.972 Å, c = 3.970 Å. The mean grain size of specimens sintered at 800 ℃ was about 30 nm, and the average thickness of 5 times coated specimens was 304~311 nm. In the specimen sintered at 750 ℃, The relative dielectric constant and loss of specimens measured at 20 ℃ were 230 and 0.130, respectively, while dependence of the dielectric constant on unit DC voltage was -8.163 %/V. The remanent polarization and coercive fields were 95.5 μC/㎠ and 161.3 kV/cm at 21 ℃, respectively. And, the highest electrocaloric property of 2.69 ℃ was observed when the electric field of 330 kV/cm was applied.

Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성 (Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics)

  • 차유정;정영훈;이영진;백종후;이우영;김대준
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

(Ba1-xCax)(Ti0.85Zr0.12Sn0.03)O3계 세라믹스의 미세구조 및 유전 특성 (Microstructure and Dielectric Properties of (Ba1-xCax)(Ti0.85Zr0.12Sn0.03)O3 Ceramics)

  • 신상훈;류주현;신동찬
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.797-802
    • /
    • 2014
  • In this study, in order to develop the capacitor composition ceramics with the good dielectric properties, $(Ba_{1-x}Ca_x)(Ti_{0.85}Zr_{0.12}Sn_{0.03})O_3$ (abbreviated as BCTZ) ceramics were prepared by the conventional solid-state reaction method. The effects of Ca substitution on the microstructure and dielectric properties was investigated. The X-ray diffraction patterns demonstrated that all the specimens showed perovskite phase, and secondary phases are indicated in the measurement range of X-ray diffraction. Also, all the specimens indicated an rhombohedron phase structure. It was identified from the X-ray diffraction patterns that the secondary phase formed in grain boundaries and then decreased the dielectric properties. For all the specimens, observed one peak was tetragonal cubic phase transition temperature($T_c$), which is located in the vicinity of room temperature.