• Title/Summary/Keyword: Testis weight

Search Result 208, Processing Time 0.03 seconds

Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways

  • Kilinc, Leyla;Uz, Yesim Hulya
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.3
    • /
    • pp.211-220
    • /
    • 2021
  • Objective: The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods: Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results: Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion: CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.

Korean Red Ginseng (Panax ginseng Meyer) with enriched Rg3 ameliorates chronic intermittent heat stress-induced testicular damage in rats via multifunctional approach

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Hwang, Seock-Yeon;Jeong, Min-Sik;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.135-142
    • /
    • 2019
  • Background: Panax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress-induced testicular damage in experimental rats was evaluated. Methods: Male rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures ($32{\pm}1^{\circ}C$, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. Results: Significant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress-induced changes in rats significantly (p < 0.05) at both concentrations. Conclusion: KGC04P attenuated heat stress-induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

The effects of sesame oil and different doses of estradiol on testicular structure, sperm parameters, and chromatin integrity in old mice

  • Mohammadzadeh, Masoomeh;Pourentezari, Majid;Zare-Zardini, Hadi;Nabi, Ali;Esmailabad, Saeed Ghasemi;Khodadadian, Ali;Talebi, Ali Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.34-42
    • /
    • 2021
  • Objective: Studies of the effects of estrogens on the male reproductive system have emphasized the role of these hormones in male fertility. Sesame oil has many phytoestrogenic compounds and may improve male fertility. This study investigated the effects of sesame oil and different concentrations of estrogen on sperm parameters and DNA integrity in male mice. Methods: Twenty old NMRI (The Naval Medical Research Institute) male mice (40 weeks; weight, 30-35 g) were treated with sesame oil or different concentrations of estrogen (estradiol, 1 and 10 μL/kg/day) or received no treatment (controls). After 35 days, sperm parameters and DNA integrity were assessed and analyzed. Results: Sperm count, progressive motility, and morphology were decreased in the group that received 10 μL/kg of estradiol. A remarkably lower percentage of DNA fragmentation and protamine deficiency were detected in the group that received 1 μL/kg of estradiol. In the groups that received sesame oil and 1 μL/kg of estradiol, the numbers of spermatogonia and Leydig cells were higher than in controls. The combination of sesame oil and 1 μL/kg of estradiol led to improved sperm parameters and chromatin and testicular structure. Conclusion: Based on this study, consumption of sesame oil and a low concentration of estradiol may improve testicular function in older mice.

Letrozole, an aromatase inhibitor, improves seminal parameters and hormonal profile in aged endangered Markhoz bucks

  • Rezaei, Ako;Vaziry, Asaad;Farshad, Abbas
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1666-1674
    • /
    • 2022
  • Objective: Letrozole, a potent aromatase inhibitor, is known to have the potential to modify male reproductive function by altering sex hormone levels. This study aimed to evaluate the semen and testicular characteristics and hormonal profile of aged Mrakhoz bucks (Capra hircus) treated with letrozole. Methods: Twelve Markhoz male goats, aged between 4.5 to 5.5 years with an average body weight (BW) of 61.05±4.97 kg were used for the study. Animals were randomly divided into two equal groups and subcutaneously received either 0.25 mg/kg BW of letrozole or a control every week for 2 months. The semen collections were performed every 10 days, and blood samples and testicular biometric records were collected at 20 days intervals. Results: Letrozole causes increased testosterone and follicle-stimulating hormone levels, testosterone to estradiol ratio, semen index and reaction time during the period from 20th to 60th days (p<0.05). Furthermore, letrozole-treated bucks had higher semen volume, sperm concentration, and total sperm per ejaculate from 30th to 60th days (p<0.05). However, no differences occurred between the groups in scrotal circumference, relative testicular volume, semen pH, abnormality, acrosome integrity, and membrane integrity of sperm during the study (p>0.05). The serum luteinizing hormone levels, sperm viability, motility, and progressive motility increased, and estradiol levels decreased after 40th to 60th days of letrozole treatment (p<0.05). Conclusion: Letrozole application to aged Markhoz bucks provokes reproductive hormonal axis which, in turn, induces enhancement of semen production and quality.

The relationship between anthropometric and metabolic risk factors and testicular function in healthy young men

  • Hakki Uzun;Merve Huner;Mehmet Kivrak;Ertan Zengin;Yusuf Onder Ozsagir;Berat Sonmez;Gorkem Akca
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • Objective: This study investigated the relationship of anthropometric and metabolic risk factors with seminal and sex steroidal hormone parameters in a screened population of healthy males. Methods: The participants were healthy young men without chronic or congenital diseases. The body composition parameters that we investigated were measured weight, height, and waist circumference (WC), as well as bioelectrical impedance analysis. Semen samples were analyzed for semen volume, sperm concentration, sperm motility and morphology, seminal pH, and liquefaction time. Biochemistry analysis, including glucose and lipid metabolism parameters, was conducted on fasting blood samples. Testicular volume was calculated separately for each testis using ultrasonography. Results: Body mass index exhibited an inverse association with total sperm count. WC showed negative correlations with numerous seminal parameters, including sperm concentration, total sperm count, sperm morphology, and follicle-stimulating hormone levels. The basal metabolic rate was associated with seminal pH, liquefaction time, and sperm motility. WC, fat mass percentage, and triglyceride levels exhibited negative correlations with sex hormone binding globulin. The measures of glucose metabolism were associated with a greater number of seminal parameters than the measures of cholesterol metabolism. C-reactive protein levels were inversely associated with sperm concentration and total sperm count. Conclusion: Anthropometric and metabolic risk factors were found to predict semen quality and alterations in sex steroidal hormone levels.

Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse

  • Miao Du;Shikun Chen;Yang Chen;Xinxu Yuan;Huansheng Dong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.50-60
    • /
    • 2024
  • Objective: Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat deposition-induced reproductive performance. Methods: High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. Results: It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. Conclusion: Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.

Phycocyanin alleviates alcohol-induced testicular injury in male Wistar rats

  • Oumayma Boukari;Soumaya Ghoghbane;Wahid Khemissi;Thalja Lassili;Olfa Tebourbi;Khemais Ben Rhouma;Mohsen Sakly;Dorsaf Hallegue
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.2
    • /
    • pp.102-111
    • /
    • 2024
  • Objective: Given the noteworthy implications of alcohol consumption and its association with male infertility, there has been a notable focus on investigating natural alternatives to mitigate its adverse effects. Thus, this study was conducted to assess the potential protective effect of phycocyanin extract derived from the blue algae Arthrospira (Spirulina) platensis against ethanol-induced oxidative stress, disturbances in testicular morphology, and alterations in sperm production. Methods: Male rats were divided into four groups (five rats each): the control group received a saline solution, the ethanol exposed group (EtOH) was subjected to intraperitoneal injections of 10 mL/kg of ethanol solution at a concentration of 38% (v/v), the phycocyanin alone treated group (P) received oral administration of phycocyanin at a dosage of 50 mg/kg, and the phycocyanin-cotreated group (PE) was given oral phycocyanin followed by ethanol injections. All treatments were administered over a period of 14 days. Results: Our findings demonstrated that ethanol exposure induced reproductive toxicity, characterized by reduced sperm production and viability, alterations in testicular weight and morphology, increased lipid peroxidation levels, and elevated oxidative enzyme activity. In addition, the ethanol-intoxicated group showed perturbations in serum biochemical parameters. However, the simultaneous exposure to ethanol and phycocyanin exhibited a counteractive effect against ethanol toxicity. Conclusion: The results showed that supplementation of phycocyanin prevented oxidative and testicular morphological damage-induced by ethanol and maintained normal sperm production, and viability.

Effect of Green Tea on Tissue Distribution and Deposition of 14C-Benzo[a]pyrene in Rats (흰쥐에서 녹차의 섭취가 14C-Benzo[a]pyrene의 조직 분배 및 잔류에 미치는 영향)

  • Kim, Ju-Yeon;Noh, Sang-K.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.818-823
    • /
    • 2011
  • Recently, we showed that green tea extract (GTE) markedly lowers the intestinal absorption of $^{14}C$-benzo[a]pyrene ($^{14}C$-BaP) and enhances its secretion into the biliary route, suggesting a protective role for GTE against body burden. These findings indicate that green tea could be used as an effective dietary means against the toxicity of BaP. The present study, therefore, was designed to investigate if green tea intake could affect the tissue distribution and deposition of $^{14}C$-BaP in rats. Male Sprague-Dawley rats had free access to a nutritionally adequate AIN-93G diet and deionized water. At ~340 g of weight, the rats were injected intraperitoneally with 27.4 kBq of [4-$^{14}C$]-BaP and 5.0 mg of BaP dissolved in $300\;{\mu}L$ of olive oil and then assigned randomly to the following two groups: one group (GTE) of rats was fed the AIN-93G diet with GTE via drinking water at approx. 4.7 mg of catechins/d, whereas the other was fed the same diet but without GTE (control). At 4 wk of dietary treatment with GTE, animals were euthanized and heart, liver, brain, spleen, kidney, retroperitoneal fat, testis, and epididymal fat were collected, weighed, and analyzed for tissue $^{14}C$-BaP. Both the control and GTE groups continuously gained weight throughout the study, but there was no significant difference between the groups. No significant differences were observed in the weights of heart, liver, brain, spleen, kidney, retroperitoneal fat, testis, and epididymal fat. However, the radioactivities of $^{14}C$-BaP, expressed in dpm/g, were significantly lower in the heart, liver, brain, spleen, and epididymal fat of rats receiving GTE as compared to their respective controls. These data indicate that green tea intake markedly lowers tissue accumulation of $^{14}C$-BaP. Taken together, these findings suggest that the decreased tissue levels of BaP by GTE intake may be associated with lowered intestinal absorption of BaP and its enhanced secretion into the bile.

Effect of Gamma Irradiation and Cichorium Products on Oxidative Damage and Lipid Metabolism in Streptozotocin-Induced Diabetic Rats (감마선 전신 조사와 치커리 가공물 식이가 Streptozotocin 유발 당뇨쥐의 산화적 손상과 지질대사에 미치는 영향)

  • Woo, Hyun-Jung;Kim, Ji-Hyang;Kim, Jin-Kyu;Kim, Hee-Jung;Park, Ki-Beom
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.102-111
    • /
    • 2006
  • The increased occurrence of hyperglycemia and oxidative stress in streptozotocin (STZ) induced type I diabetes has been implicated in the etiology and pathology of disease complication. STZ has known to be genotoxic in a variety of assays including tests for microbial mutagenesis and unscheduled DNA synthesis in rat kidney. Diabetes mellitus (DM) is a pathologic condition, resulting in severe metabolic imbalances and non-physiologic changes in many tissues. We examined the effect of gamma radiation and KWNP on preventing the development of insulin dependent diabetes mellitus using streptozotocin-induced Fisher 344 diabetic rats. The hematological values (red blood cell and white blood cell), serum biochemical constituents-alkaline phosphatase (ALP), total cholesterol, triglycerides and insulin-were checked and the organs (testis, spleen and kidney) were weighed. The gonad indices of the STZ treated groups were much lower than the value of the control group. But the gonad indices of the KWNP treated groups were higher than those of the treated groups. The ratio of the weight of kidney to the body weight of the STZ treated groups was higher than that of the control group. The value of the diabetic group treated with KWNP after irradiation (F group) was lower than the other STZ treated groups. The white blood cell and ALP values of the F group were lower than the other STZ groups, as well. The cholesterol and triglyceride values of all the KWNP treated groups were significantly lower than the other groups. A significant increase (about 10 times) of insulin was detected in the F group. The results of hematological assay showed the distinctive damage in the irradiated and STZ treated groups. The quantity of apoptotic cells in seminiferous tubule of testis confirmed a serious damage as assessed in the STZ treated groups. These experimental results have revealed that treatment of the products of KWNP after irradiation has the antidiabetic effect in the STZ-induced diabetic rats. But the F group showed higher recuperative power. These experimental results have revealed that treatment of the gamma irradiation and KWNP have the recovering effect in the STZ-induced diabetic rats.

Studies on Spermatogenesis in Japanese Quail(Coturnix coturnix japonica) (메추리(Coturnix coturnix)의 정자 발생에 관한 연구)

  • 김재홍;박영석
    • Korean Journal of Poultry Science
    • /
    • v.16 no.2
    • /
    • pp.91-100
    • /
    • 1989
  • This study was conducted to observe 1) the changes of cellular association in seminiferous tubles from 2 to 8 weeks of age, and 2) the cycle phenomena of seminiferous epithelia at 14 weeks of age in Japanese quail. Total 80 birds were examined at a week interval from 2 to 8 weeks, and 14 weeks of age. The results were summarized as follows: 1) The body and testis weights showed most prominent increase during 4 to 5 weeks and 6 to 8 weeks of age respectively. And also the diameters of seminiferous tubles were abruptly enlaged during 6 to 8 weeks of age. 2) Genocytes in the seminiferous tubles were still in existence at 3 weeks of age, however they did not come out after 4 weeks of age. Spermatogonia, primary spermatocytes and spermatids made their first arpearances in the seminiferous from 3, 4 and 6 weeks of age, respectively. Spermatozoa were observed for the first time at 7 weeks of age, but full spermatogenic activity was completed from 8 weeks of age. 3) At 14 weeks of age, the average weight at testis was 3.7g and its ratio to the body weight was approximately 3.0 percent. And at this age, average diameter of seminiferous tubules was 192.08 $\mu\textrm{m}$, and average numbers of spermatogonia, spermatocytes, spermatids and spermatozoa within the cross section of seminiferous tubules were 7.74, 40.81, 28.42, 104.55 and 105.98, respectively. Spermatogonia and spermatid were classfied into 2 and 3 types, respectively. 4) At 14 weeks of age, the cycle of seminiferous epithelium could be divided into S stages with following characteristics. (1) Stage I: Seminiferous tubules showing type I and II spermatids. (2) Stage II: Seminiferous tubules showing type III spermatids only. (3) Stage III: Immature spermatozoa gathered near the sertoli cytoplasm. (4) Stage IV: Forming a bundle of 15-20 spematozoa. (5) Stage V: Spermatozoa bundle leaving the sertoli cytoplasm into lumen of the seminferous tubule. 5) Usually 2-3 stages of the seminiferous epithelium cycle were concurrently appeared within a tubular cross section, and frequency of each stage from I to V within cross section of seminiferous tubules were 11.91%, 27.03%, 27.96%, 19.04% and 17.98%, respectively.

  • PDF