• Title/Summary/Keyword: Testing procedure

Search Result 880, Processing Time 0.028 seconds

The Test-Retest Reliability of Subjective Visual Horizontal Testing: Comparisons between Solid and Dotted Line Images

  • Zakaria, Mohd Normani;Wahat, Nor Haniza Abdul;Zainun, Zuraida;Sakeri, Nurul Syarida Mohd;Salim, Rosdan
    • Journal of Audiology & Otology
    • /
    • v.24 no.2
    • /
    • pp.107-111
    • /
    • 2020
  • The present study aimed to determine the test-retest reliability of subjective visual horizontal (SVH) testing when tested with solid and dotted line images. In this repeated measures study, 36 healthy young Malaysian adults (mean age=23.3±2.3 years, 17 males and 19 females) were enrolled. All of them were healthy and had no hearing, vestibular, balance, or vision problems. The SVH angles were recorded from each participant in an upright body position using a computerized device. They were asked to report their horizontality perception for solid and dotted line images (in the presence of a static black background). After 1 week, the SVH procedure was repeated. The test-retest reliability of SVH was found to be good for both solid line [intraclass correlation (ICC)=0.80] and dotted line (ICC=0.78). As revealed by Bland-Altman plots, for each visual image, the agreements of SVH between the two sessions were within the clinically accepted criteria (±2°). The SVH testing was found to be temporally reliable, which can be clinically beneficial. Both solid and dotted lines in the SVH testing are reliable to be used among young adults.

The Test-Retest Reliability of Subjective Visual Horizontal Testing: Comparisons between Solid and Dotted Line Images

  • Zakaria, Mohd Normani;Wahat, Nor Haniza Abdul;Zainun, Zuraida;Sakeri, Nurul Syarida Mohd;Salim, Rosdan
    • Korean Journal of Audiology
    • /
    • v.24 no.2
    • /
    • pp.107-111
    • /
    • 2020
  • The present study aimed to determine the test-retest reliability of subjective visual horizontal (SVH) testing when tested with solid and dotted line images. In this repeated measures study, 36 healthy young Malaysian adults (mean age=23.3±2.3 years, 17 males and 19 females) were enrolled. All of them were healthy and had no hearing, vestibular, balance, or vision problems. The SVH angles were recorded from each participant in an upright body position using a computerized device. They were asked to report their horizontality perception for solid and dotted line images (in the presence of a static black background). After 1 week, the SVH procedure was repeated. The test-retest reliability of SVH was found to be good for both solid line [intraclass correlation (ICC)=0.80] and dotted line (ICC=0.78). As revealed by Bland-Altman plots, for each visual image, the agreements of SVH between the two sessions were within the clinically accepted criteria (±2°). The SVH testing was found to be temporally reliable, which can be clinically beneficial. Both solid and dotted lines in the SVH testing are reliable to be used among young adults.

CQI Activity for the reduction of inaquate testing sample (부적합 검체 감소를 위한 CQI 활동)

  • Cha, Sang-Yeol;Yun, Eun-Hui;Lee, In-Suk;Bae, Seong-Hun;Gang, Ju-Seok;Baek, Yeo-Hyeon
    • Journal of Korea Association of Health Promotion
    • /
    • v.4 no.1
    • /
    • pp.125-131
    • /
    • 2006
  • Background: Inadequate samples make laboratory tests delay cause errors, which will deteriorate the quality of the tests. Therefore, adequate samples are essential for reliable test result. To reduce the inadequate samples, they should to analyze problems and seek a way of improvement through CQI (Continuous Quality Improvement) activity. This will minimize errors during the test and produce a fast and accurate result. Eventrally, the qualily of entire test may be improved, and as a result, a good quality of medical care service may be provided. Methods: At first, inappropriate testing items were collected. Then, generating fctors and problems were investigated and analyzed in each case, In addition, the category with higher frequency wes primarily supervised. In consegalnce, a reduction of are dustion of improper testing sample was oxpected through continuous education and CQI activity. Conclusion : At the beginning of CQI activitv, the number of inadequate testing sample was of 8,591 total samples, which gives the frequency of 0.72%. As CQI activity was carried out the number of improper testing sample reduced to 58 out of 11,415 cases, which yields the frequency of 0,51%. One may notice the difference 0.2%. Among the inadequate sample(blood), there was a high frequency of hemolysis; thus, more of CQI activity is required for this specific matter. Because the occurrence of inadequate testing affects the clinical outcomes, it is extremely important that one manages each step of the procedure in collecting samples and mamtaines the quality of entire tests.

  • PDF

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

A Study on Systems Engineering Based Compliance Procedure for A-SMGCS (시스템 엔지니어링을 적용한 A-SMGCS 적합성 검증 방안 연구)

  • Seol, Eun-Suk;Kim, Sang-Hun;Ku, Sung-Kwan;Cho, Jeong-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Advanced surface movement guidance and control system (A-SMGCS) is a system providing routing, guidance and surveillance for the control of aircraft and vehicles in order to maintain the predetermined surface movement rate under all weather conditions while maintaining the required level of safety. In the present study, system engineering was introduced to develop the compliance procedure for the A-SMGCS. At first, requirements for the level IV A-SMGCS were defined and analyzed from the concept of operations (CONOPS). Then, system architecture and specifications were constructed through the functional analysis and allocation. After that, work breakdown structure (WBS) and related integrated master schedule (IMS) were established. Lastly, compliance checklist (CCL) and test and evaluation master plan (TEMP) were developed to verify and validate the system.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Cyclic Seismic Testing of Steel Moment Connections Reinforced with Welded Straight Haunch (용접 수평헌치로 보강된 철골 모멘트 접합부의 반복재하 내진실험)

  • 이철호;권근배;정종현;오명호;구은숙
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • Recently a simplified design procedure as well as load transfer model for seismic steel moment connections with welded straight haunch have been proposed by Lee and Uang. Cyclic seismic testing was conducted to verify the proposed design procedure and to develop the details that will prevent the cracking at the haunch tip, where stress concentration was the highest. All the specimens thus designed effectively pushed plastic hinging away from the haunch tip and were able to develop satisfactory plastic rotation capacity of 0.04 radian with no fracture. A sloped edge combined with drilling a hole near the haunch tip or a pair of stiffeners(partially or fully) extended from the beam web successfully prevented the crack initiation at the haunch tip. The strut action of the haunch web, which had been predicted from the previous analytical study, was also experimentally identified through the strain gage readings.

A Study on the Bulletproof Reliability Program (방탄물자 신뢰성 평가(BRP)에 관한 연구)

  • Gu, Seung Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.300-307
    • /
    • 2020
  • This study examines the reliability evaluation concept and procedure of bulletproof materials (BRP: Bulletproof Reliability Program). ASRP, RAM analysis tasks were utilized for the study. Based on this analysis, the concept, method, performance system, and procedure of BRP were examined. The BRP task execution procedure consists of the following four steps. First, the business (evaluation) planning stage establishes the evaluation plan every year. Second, there is a testing stage that performs the general inspection, functional test, and operational test according to the established plan. Thirdly, there is an evaluation/analysis phase to synthesize/analyze the results and to judge the appropriate grade considering the performance of bulletproof materials. Finally, the follow-up step of each group according to the result. The following criteria are suggested for BRP implementation: BRP testing capability, development of BRP evaluation method, and recognition of the importance of BRP business.

Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework

  • Simiu, Emil;Yeo, DongHun
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.489-503
    • /
    • 2015
  • This paper surveys and complements contributions by the National Institute of Standards and Technology to techniques ensuring that the wind tunnel procedure for the design of high-rise structures is based on sound methods and allows unambiguous inter-laboratory comparisons. Developments that enabled substantial advances in these techniques include: Instrumentation for simultaneously measuring pressures at multiple taps; time-domain analysis methods for estimating directional dynamic effects; creation of large simulated extreme directional wind speed data sets; non-parametric methods for estimating mean recurrence intervals (MRIs) of Demand-to-Capacity Indexes (DCIs); and member sizing based on peak DCIs with specified MRIs. To implement these advances changes are needed in the traditional division of tasks between wind and structural engineers. Wind engineers should provide large sets of directional wind speeds, pressure coefficient time series, and estimates of uncertainties in wind speeds and pressure coefficients. Structural engineers should perform the dynamic analyses, estimates of MRIs of wind effects, sensitivity studies, and iterative sizing of structural members. The procedure is transparent, eliminates guesswork inherent in frequency domain methods and due to the lack of pressure measurements, and enables structural engineers to be in full control of the structural design for wind.