• Title/Summary/Keyword: Testing body

Search Result 546, Processing Time 0.032 seconds

The Development of Pants Pattern for the Improvement of Obese Women's Fit (피트성 향상을 위한 비만여성의 바지패턴 개발)

  • Lee, Jin-Suk;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.13 no.2
    • /
    • pp.253-262
    • /
    • 2011
  • The purpose of this study was improvement of the pants fit for obese women. The results were as follows; 5 obese women in their 20s and 30s were selected for the testing 3D body. They showed no significant differences in all items, comparing with the data of 5th Size Korea body dimensions. The average waist circumstance of the subjects' 3D body dimensions was 87.0 cm and hip circumstance was 102.4 cm, and their obese body types had similar mean values. Based on the survey results and the 3D body dimensions of 5th Size Korea body dimensions, a pants pattern to supplement their body type and improve a fit was designed with waist circumference(88 cm), hip circumference(103 cm), crotch length(27.1 cm), thigh circumference(62 cm), pants length(97 cm), pants hem line circumference(44 cm). Based on the detailed design of ready made pants and the study results of young obese women's preference for pants design, pants of straight silhouette and semi-tight fit which have waist line lowered by 3.5 cm from the waist circumference line, 3.5 cm belt width, no front dart and one back dart, were manufactured with 100% black cotton and cotton spandex mixed fabrics.

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Acute and Subchronic Inhalation Toxicity of n-Octane in Rats

  • Sung, Jae-Hyuck;Choi, Byung-Gil;Kim, Hyeon-Yeong;Baek, Min-Won;Ryu, Hyun-Youl;Kim, Yong-Soon;Choi, Young-Kuk;Yu, Il-Je;Song, Kyung-Seuk
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Objectives: We have investigated the toxic effects of the inhalation of subchronic and acute levels of n-octane. Methods: The rats were exposed to n-octane of 0, 2.34, 11.68 and 23.36 mg/L (n = 5 rats/group/gender) in an acute inhalation test (Organization for Economic Co-operation and Development (OECD) TG 403), or to 0, 0.93, 2.62 and 7.48 mg/L (n = 10 rats/group/gender) for a subchronic inhalation test (OECE TG 413), to establish a national chemical management system consistent with the Globally Harmonized Classification System (GHS). Results: Acutely-exposed rats became lethargic but recovered following discontinuation of inhalation. Other clinical symptoms such as change of body weight and autopsy finds were absent. The LC50 for the acute inhalation toxicity of n-octane was determined to exceed 23.36 mg/L and the GHS category was 'not grouping'. Subchronically-treated rats displayed no significant clinical and histopathological differences from untreated controls; also, target organs were affected hematologically, biochemically and pathologically. Therefore, the no observable adverse effect level was indicated as exceeding 7.48 mg/L and the GHS category was 'not grouping' for the specific target organ toxicity upon repeated exposure. Conclusion: However, n-octane exposure should be controlled to be below the American Conference of Industrial Hygienists recommendation (300 ppm) to prevent inhalation-related adverse health effects of workers.

A lower bound analytical estimation of the fundamental lateral frequency down-shift of items subjected to sine testing

  • Nali, Pietro;Calvi, Adriano
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 2020
  • The dynamic coupling between shaker and test-article has been investigated by recent research through the so called Virtual Shaker Testing (VST) approach. Basically a VST model includes the mathematical models of the test-item, of the shaker body, of the seismic mass and the facility vibration control algorithm. The subsequent coupled dynamic simulation even if more complex than the classical hard-mounted sine test-prediction, is a closer representation of the reality and is expected to be more accurate. One of the most remarkable benefits of VST is the accurate quantification of the frequency down-shift (with respect to the hard-mounted value), typically affecting the first lateral resonance of heavy test-items, like medium or large size Spacecraft (S/Cs), once mounted on the shaker. In this work, starting from previous successful VST experiences, the parameters having impact on the frequency shift are identified and discussed one by one. A simplified analytical system is thus defined to propose an efficient and effective way of calculating the lower bound frequency shift through a simple equation. Such equation can be useful to correct the S/C lateral natural frequency measured during the test, in order to remove the contribution attributable to the shaker in use. The so-corrected frequency value becomes relevant when verifying the compliance of the S/C w.r.t. the frequency requirement from the Launcher Authority. Moreover, it allows to perform a consistent post-test correlation of the first lateral natural frequency of S/C FE model.

The Test-Retest Reliability of Subjective Visual Horizontal Testing: Comparisons between Solid and Dotted Line Images

  • Zakaria, Mohd Normani;Wahat, Nor Haniza Abdul;Zainun, Zuraida;Sakeri, Nurul Syarida Mohd;Salim, Rosdan
    • Journal of Audiology & Otology
    • /
    • v.24 no.2
    • /
    • pp.107-111
    • /
    • 2020
  • The present study aimed to determine the test-retest reliability of subjective visual horizontal (SVH) testing when tested with solid and dotted line images. In this repeated measures study, 36 healthy young Malaysian adults (mean age=23.3±2.3 years, 17 males and 19 females) were enrolled. All of them were healthy and had no hearing, vestibular, balance, or vision problems. The SVH angles were recorded from each participant in an upright body position using a computerized device. They were asked to report their horizontality perception for solid and dotted line images (in the presence of a static black background). After 1 week, the SVH procedure was repeated. The test-retest reliability of SVH was found to be good for both solid line [intraclass correlation (ICC)=0.80] and dotted line (ICC=0.78). As revealed by Bland-Altman plots, for each visual image, the agreements of SVH between the two sessions were within the clinically accepted criteria (±2°). The SVH testing was found to be temporally reliable, which can be clinically beneficial. Both solid and dotted lines in the SVH testing are reliable to be used among young adults.

The Test-Retest Reliability of Subjective Visual Horizontal Testing: Comparisons between Solid and Dotted Line Images

  • Zakaria, Mohd Normani;Wahat, Nor Haniza Abdul;Zainun, Zuraida;Sakeri, Nurul Syarida Mohd;Salim, Rosdan
    • Korean Journal of Audiology
    • /
    • v.24 no.2
    • /
    • pp.107-111
    • /
    • 2020
  • The present study aimed to determine the test-retest reliability of subjective visual horizontal (SVH) testing when tested with solid and dotted line images. In this repeated measures study, 36 healthy young Malaysian adults (mean age=23.3±2.3 years, 17 males and 19 females) were enrolled. All of them were healthy and had no hearing, vestibular, balance, or vision problems. The SVH angles were recorded from each participant in an upright body position using a computerized device. They were asked to report their horizontality perception for solid and dotted line images (in the presence of a static black background). After 1 week, the SVH procedure was repeated. The test-retest reliability of SVH was found to be good for both solid line [intraclass correlation (ICC)=0.80] and dotted line (ICC=0.78). As revealed by Bland-Altman plots, for each visual image, the agreements of SVH between the two sessions were within the clinically accepted criteria (±2°). The SVH testing was found to be temporally reliable, which can be clinically beneficial. Both solid and dotted lines in the SVH testing are reliable to be used among young adults.

On the accuracy of estimation of rigid body inertia properties from modal testing results

  • Ashory, M.R.;Malekjafarian, A.;Harandi, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.53-65
    • /
    • 2010
  • The rigid body inertia properties of a structure including the mass, the center of gravity location, the mass moments and principal axes of inertia are required for structural dynamic analysis, modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia properties of complex structures. Several experimental approaches have been developed to determine the rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work two experimental methods are used to estimate the rigid body inertia properties of a frame. The first approach consists of using the amount of mass as input to estimate the other inertia properties of frame. In the second approach, the property of orthogonality of modes is used to derive the inertia properties of a frame. The accuracy of the estimated parameters is evaluated through the comparison of the experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is presented.

Considerable Differences of Body Surface Area in the Preparation of Bicycle Wear (싸이클웨어의 패턴개발을 위한 체표면 변화에 관한 연구)

  • 김연행;김여숙
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.375-386
    • /
    • 2003
  • The purpose of this study is to seek the change of body surface according to cycling motions and to give suggestions to the pattern and spare space between body and wear in each bodily parts to be heavily considered for making the bicycle wear. The cycling motions were analyzed by taking the sequential pictures of cycling covering motion by a digital camera. The experiments with gypsum were toward a woman in her twenties. We draw the line standard of the body's surface, separated their gypsum-replicated fragments of body's surface following the analyses of the change in their lengths. As the motions were made, we decided the degree of the changed length as spare space when compared the erected posture with the cycling posture, presenting the pattern of the cycling wear with the preparation of wears for testing. After that, the essential experiments were conducted toward three cycle players wore our experimental wears. Regards their evaluated appearance, evaluations over three points were obtained from all parameters except the width of front armhole. Accordingly, our experimental wears were remarkably understood as a relatively proper wear as bicycle wear.

  • PDF

Safety Regulation of Enhanced In-Service Inspection(ISI) in Nuclear Power Plant (원자력발전소 강화 가동중검사 안전규제)

  • Shin, Ho-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • The integrity of components and piping of operating nuclear power plants has been identified by in-service inspection(ISI) requirements and activities commensurate with standards and codes such as KEPIC MI or ASME Code Section XI. However, the other various degradation mechanisms not considered during design stage of nuclear power plants have been checked by enhanced ISI. The requirements of enhanced ISI have been voluntarily developed by the industry itself or strickly issued by regulatory body. Even though the requirements were developed by the industry, they should be reviewed by regulatory body for their application in nuclear power plants. The enhanced ISI activities and requirements of non-destructive examination(NDE) which reflect the degradation issues in nuclear power industry will be primarily discussed in this paper.

A Diagnostic Ultrasound Imaging System (초음파 영상진단장치)

  • Lee, Seong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.217-232
    • /
    • 1999
  • The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result. their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result. the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described.

  • PDF