• Title/Summary/Keyword: Testing Temperature

Search Result 1,539, Processing Time 0.034 seconds

Elevated Temperature Tensile Properties of Austempered Ductile Irom (Mo-Ni-Cu계 오스템퍼 구상흑연주철의 고온특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.323-330
    • /
    • 1991
  • The relationships between the microstructure changes, retained austenite volume and elevated temperature tensile properties of Mo-Ni-Cu ADI corresponding to various austempering temperatures and time were investigated, After the $250^{\circ}C$ tensile test for the test piece austempered at $270^{\circ}C$ the accicular bainite structure was observed blunted under room temperature microscope. In the case of $370^{\circ}C$ austempering, the feathery bainite lath spacing was observed broadened. But after the $450^{\circ}C$ tensile test, bainitic features could not be observed. As the testing temperature increased, retained austenite volume tested at room temperature decreased. Especially, after the $450^{\circ}C$ tensile test retained austenite volume approached nearly to zero. A little higher tensile properties appeared at $250^{\circ}C$ testing than those at room temperature.

  • PDF

Accelerated Stress Testing of a-Si:H Pixel Circuits for AMOLED Displays

  • Sakariya, Kapil;Sultana, Afrin;Ng, Clement K.M.;Nathan, Arokia
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.749-752
    • /
    • 2004
  • Unlike OLEDs, there is no lifetime testing procedure for TFTs. In this work, we have defined such a procedure and developed a method for the accelerated stress testing of TFT pixel circuits in a-Si AMOLED displays. The acceleration factors derived are based on high current and temperature stress, and can be used to significantly reduce the testing time required to guarantee a 20000-hour display backplane lifespan.

  • PDF

Ultrasonic Examination of Thick Austenitic Stainless Steel Welds and Factors Influence the Sensitivity

  • Palaniappan, M.;Subbaratnam, R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.372-379
    • /
    • 2003
  • The problems encountered by ultrasonic testing of austenitic stainless steel weld joints are discussed in the paper. Due to low thermal conductivity and the occurrence of single phase between the melting point and the room temperature, coarse and oriented grains are formed in such weld metals more in thick sections. This leads to higher scattering at the grain boundaries and low signal to noise ratio, and extensive beam skewing. Experimental results to understand these problem are explained.

Defect Detection of the Wall Thinning Pipe of the Nuclear Power Plant Using Infrared Thermography (적외선열화상을 이용한 원자력발전소 감육 배관의 결함 검출)

  • Kim, Kyeong-Suk;Chang, Ho-Sub;Hong, Dong-Pyo;Park, Chan-Joo;Na, Sung-Won;Kim, Kyung-Su;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • The infrared energy is emitted in the infrared wavelength range that corresponds to the surface temperature of a object which has temperature that is over the absolute the temperature(OK). The infrared thermography (IRT) is a non-destrnctive testing method that provides thermal video for the user in real-time by converting the infrared quantity that is detected by the infrared detector into temperature. The pipes of nuclear power plant(NPP) could be thinned by the corrosion and fatigue and the defect could lead to a big accident. For this reason, the effective non-destructive testing method is necessary. In this study, the relationship between the measured temperature and the defect depth or size of NPP pipes were recognized and that was applied to detect the wall thinning defects of NPP pipes.

Diagnostic of Cast Resin Using Active Infrared Thermal Testing Method (능동열시험법을 이용한 몰드변압기 진단)

  • Lim, Young-Bae;Jeong, Seung-Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.481-484
    • /
    • 2004
  • A form of measured temperature distribution to estimate condition of a electrical apparatus is a absolute reference for condition of the apparatus, time rate of transition, and difference between reference and currently temperature. Because passive thermography which has not injection of external thermal stimulation shows difference of temperature being on surface of a structure and temperature difference between the structure and back ground, the result could apply only to estimation or monitor for condition of terminal relaxation and overload related with temperature rising. However, a thermal flow in active thermography is differently generated by structure and condition of surface and subsurface. This paper presents the nondestructive testing using the properties and includes the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

  • PDF

Optimal Design for Tubular SOFC Testing Jig (관형 고체산화물연료전지 테스트 지그 최적화)

  • Choi, Hoon;An, Gwon-Seong;Shin, Chang-Woo;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

Study on Capacitance Decreasing Characteristics of Polymer Capacitor Depending on Temperature with Charging-Discharging Condition (고분자캐패시터에 대한 충방전 조건에서의 온도에 따른 정전용량감소 특성 연구)

  • Jeong, Ui-Hyo;Lim, Hong-Woo;Hyung, Jae-Phil;Ko, Min-Ji;Jung, Chang-Uk;Cho, Jeong-Ha;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • Purpose: Polymer capacitors are known to have very high reliability as compared with liquid electrolytic capacitors, but their capacity has been reported to decrease in charge and discharge at low temperature. The purpose of this study to clarify these characteristics. Methods: In order to clarify these characteristics, charging-discharging tests were carried out for 200 hours with three different capacities and at 5 different temperature from $5^{\circ}C$ to $100^{\circ}C$. Results: As a result of the test, it was confirmed that the capacity of the polymer capacitor was decreased with higher capacity and lower temperature. Conclusion: Such a failure phenomenon was caused by the shrinkage and expansion characteristics of the polymer used therein, it is presumed that this failure phenomenon is due to the complex pore structure made by etching.

Experimental method and evaluation of the calibration capability for the national calibration centers using the platinum resistance temperature sensors (백금저항온도센서를 이용한 국가교정기관의 교정능력 평가 및 실험방법)

  • Gam, Kee-Sool;Yoo, Sung-Ho;Kim, Sung-Min;Lee, In-Sick
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • Calibration capability was evaluated using the reference-grade platinum resistance thermometer (PRT) in the temperature range of $-50^{\circ}C$ to $250^{\circ}C$ for the national calibration centers. The reference-grade PRT was calibrated at the several fixed points, which was composed by the freezing points of Sn, In, the melting point of Ga and the triple point of water and Hg, before and after the round-robin test (RRT) experiments. The temperature scale of reference-grade PRT was compared to the local standard PRT's using the system of the national calibration centers. $E_{n}$ values was calculated by the temperature difference between the reference-grade PRT and the local standard PRT, and the best measurement capability. Finally, the capability of the national calibration centers was evaluated by the $E_{n}$ values.

A Design and Implementation of the Temperature Testing Equipment Malfunction Monitoring System Using Arduino (아두이노를 이용한 온도시험 장비 오동작 감시 시스템 설계 및 구현)

  • Yoon, Myung-Seob;Park, Koo-Rack;Ko, Chang-Bae
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.317-323
    • /
    • 2016
  • This paper suggests a system that can detect malfunctions of the temperature testing equipment, and then notify this information to surroundings using arduino. Precision electronics need a test under extremely high/low temperature using temperature called a chamber. If this chamber have a malfunction situation, the precision electronics under test is damaged and scrapped. Especially when the temperature test is automatically conducted at night with no representative, this system monitors the actual temperature of the tested product in real-time by attaching a temperature sensor to the inside of the test equipment. In case when it is out of the temperature range set up by the tester, the damage to high-priced products can be prevented in the condition of extremely high/low temperature, by turning off the power of the temperature testing equipment, and also notifying this information to the worker at night-time. Regardless of the equipment manufacturers, proposed system in this paper can be applied to all kind of temperature testing equipments, and it can be also produced for low cost.

The Utilization of Nondestructive Testing and Defects Diagnosis using Infrared Thermography (적외선 열화상을 이용한 비파괴시험 활용 및 결함 진단)

  • Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.525-531
    • /
    • 2004
  • In this paper, the concept of infrared thermography(IRT), the principle of measurement of IRT and how to set up the IR camera for the nondestructive testing are described in detail. Also, its utilization and non-destructive testing(NDT) diagnosis are reviewed. By performing the periodic non-touched WDT through the estimation of thermal patterns related with the temperature for the surface targeted, IRT can be applied to the early prevention of the device failure. For the diagnosis utilization, thermal imaging patterns obtained from IRT for heated blocks with internal defects were estimated through the lion-destructive method and discussed the way of IRT estimation from the analysis of characteristics between material defects and thermal imaging patterns.