• Title/Summary/Keyword: Testing & Evaluation Method

Search Result 1,054, Processing Time 0.027 seconds

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment

  • Kim, Byung-Soo;Rha, Sun-Young
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • The aim of this paper is to discuss the effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment in the context of a one sample problem. We conducted a cDNA micro array experiment to detect differentially expressed genes for the metastasis of colorectal cancer based on twenty patients who underwent liver resection due to liver metastasis from colorectal cancer. Total RNAs from metastatic liver tumor and adjacent normal liver tissue from a single patient were labeled with cy5 and cy3, respectively, and competitively hybridized to a cDNA microarray with 7775 human genes. We used $M=log_2(R/G)$ for the signal evaluation, where Rand G denoted the fluorescent intensities of Cy5 and Cy3 dyes, respectively. The statistical problem comprises a one sample test of testing E(M)=0 for each gene and involves multiple tests. The twenty cDNA microarray data would comprise a matrix of dimension 7775 by 20, if there were no missing values. However, missing values occur for various reasons. For each gene, the no missing proportion (NMP) was defined to be the proportion of non-missing values out of twenty. In detecting differentially expressed (DE) genes, we used the genes whose NMP is greater than or equal to 0.4 and then sequentially increased NMP by 0.1 for investigating its effect on the detection of DE genes. For each fixed NMP, we imputed the missing values with K-nearest neighbor method (K=10) and applied the nonparametric t-test of Dudoit et al. (2002), SAM by Tusher et al. (2001) and empirical Bayes procedure by $L\ddot{o}nnstedt$ and Speed (2002) to find out the effect of missing values in the final outcome. These three procedures yielded substantially agreeable result in detecting DE genes. Of these three procedures we used SAM for exploring the acceptable NMP level. The result showed that the optimum no missing proportion (NMP) found in this data set turned out to be 80%. It is more desirable to find the optimum level of NMP for each data set by applying the method described in this note, when the plot of (NMP, Number of overlapping genes) shows a turning point.

  • PDF

Possible Use of NIR Spectroscopy for Soil Testing (토양검정에서 근적외 분광분석기의 이용 가능성)

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.273-277
    • /
    • 2001
  • Traditional methods of chemical analysis for the soil properties take time and produce harmful waste. The purpose of this research was to evaluate an NIR technique for measuring some soil properties that are rapid and accurate in soil fertility assessments. The NIR instrument (InfraAlyzer 500, Bran & Luebbe Co.) was used for obtaining spectral data from 140 finely ground soil for calibrations and validation estimating pH, CEC, extractable Ca, Mg, K, $SiO_2$, humic acid and EC. Partial least square regression analysis was used to develop a calibration of NIR spectroscopy method. The results indicated that NIR spectroscopy could be used as a routine nondestructive method quantitatively determining soil chemical properties quickly. However the NIR technique may require sample preparation to obtain even diffuse reflection spectra from the soil and data manipulations to obtain optimal predictions.

  • PDF

Axial load detection in compressed steel beams using FBG-DSM sensors

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Lee, Zheng-Kuan;Tullini, Nerio
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2018
  • Nondestructive testing methods are required to assess the condition of civil structures and formulate their maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler-Bernoulli beam model and estimates the compressive load by using the measured displacement along the beam's length. Knowledge of flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating-differential settlement measurement (FBG-DSM) sensors at specific cross sections along the beam's length. The accuracy of midspan deflections offered by the FBG-DSM sensors provided excellent force estimations. Compressive load detection accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be successfully applied to steel beams with low slenderness under real conditions.

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

In vitro and in vivo studies on theophylline mucoadhesive drug delivery system

  • Bandyopadhyay, AK;Perumal, P
    • Advances in Traditional Medicine
    • /
    • v.7 no.1
    • /
    • pp.51-64
    • /
    • 2007
  • Mucus is an aqueous gel complex with a constitution of about 95% water, high molecular weight glycoprotein (mucin), lipid, salts etc. Mucus appears to represent a significant barrier to the absorption of some compounds. Natural mucoadhesive agent was isolated and purified from the aqueous extract of the seeds of prosopis pallida (PP). Formulated tablet with the isolated material by wet granulation method. Some natural edible substances are in consideration for candidates as mucoadhesive agents to claim more effective controlled drug delivery as an alternative to the currently used synthetic mucoadhesive polymers. Subjected the materials obtained from natural source i.e. PP and standard synthetic substance, sodium carboxymethyl cellulose for evaluation of mucoadhesive property by various in vitro and in vivo methods. Through standard dissolution test and a model developed with rabbit, evaluated in vitro controlled release and bioadhesive property of theophylline formulation. Mucoadhesive agent obtained from PP showed good mucoadhesive potential in the demonstrated in vitro and in viνo models. The results suggest that the mucoadhesive agent showed controlled release properties by their application, substantially. In order to assess the gastrointestinal transit time in vivo, a radio opaque X-ray study performed in healthy rabbit testing the same controlled release formulation with and without bioadhesive polymer. Plasma levels of theophylline determined by the HPLC method and those allowed correlations to the in vitro mucoadhesive study results. Better correlation found between the results in different models. PP may acts as a better natural mucoadhesive agent in the extended drug delivery system.

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

A Kalman filter based algorithm for wind load estimation on high-rise buildings

  • Zhi, Lun-hai;Yu, Pan;Tu, Jian-wei;Chen, Bo;Li, Yong-gui
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • High-rise buildings are generally sensitive to strong winds. The evaluation of wind loads for the structural design, structural health monitoring (SHM), and vibration control of high-rise buildings is of primary importance. Nevertheless, it is difficult or even infeasible to measure the wind loads on an existing building directly. In this regard, a new inverse method for evaluating wind loads on high-rise buildings is developed in this study based on a discrete-time Kalman filter. The unknown structural responses are identified in conjunction with the wind loads on the basis of limited structural response measurements. The algorithm is applicable for estimating wind loads using different types of wind-induced response. The performance of the method is comprehensively investigated based on wind tunnel testing results of two high-rise buildings with typical external shapes. The stability of the proposed algorithm is evaluated. Furthermore, the effects of crucial factors such as cross-section shapes of building, the wind-induced response type, errors of structural modal parameters, covariance matrix of noise, noise levels in the response measurements and number of vibration modes on the identification accuracy are examined through a detailed parametric study. The research outputs of the proposed study will provide valuable information to enhance our understanding of the effects of wind on high-rise buildings and improve codes of practice.

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.