• 제목/요약/키워드: Test ship

검색결과 1,259건 처리시간 0.047초

Experimental Investigation of the Hydrodynamic Force Acting on Ship Hull and Rudder in Various Wave Direction

  • Nguyen, Van Minh;Nguyen, Tien Thua;Seo, Juwon;Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.105-114
    • /
    • 2018
  • In the past, traditional methods of research on ship maneuvering performance were estimated in calm waters. However, the course-keeping ability and the maneuvering performance of a ship can be influenced by the presence of waves. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves. In this study, the force acting on a moving ship and a rudder behind the model ship will be performed in regular waves in Changwon National University (CWNU). In addition, the prediction force acting on the rudder in calm waters was carried out and compared with those of Computational Fluid Dynamics (CFD). Model test in regular wave was performed to predict the force acting on the ship and the rudder behind the model ship in various wave directions. The effects of wavelength and wave direction on hydrodynamic forces acting on the ship hull versus rudder angle is discussed.

Zig-Zag test에 의한 선박의 보침성능 평가에 관한 연구 (Evaluation of Course-keeping Quality of a Ship by Zig-Zag Test)

  • 이승건;이승재
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.54-60
    • /
    • 1998
  • 일반적으로 선박의 보침성능을 평가하기 위해서 spiral test가 이용되고 있다. 그러나 spiral curve를 얻기 위한 spiral시험 및 역spiral시험에 있어서 바람과 파도 등의 영향으로 많은 어려움이 따른다. 따라서 spiral 시험을 하지 않고도, zig-zag test의 overshoot angle을 이용하여 선박의 보침성능을 판정하는 방법이 시도되고 있다. 본 연구에서는 실선의 spiral 시험결과를 대상으로, K-T 조종수학모델을 적용하여 zig-zag 운동을 계산하고, overshoot angle과 보침성능과의 상관관계를 조사하였다.

  • PDF

운용시험평가 데이터를 활용한 함정 운용가용도 평가 방안 및 사례 연구 (A Study on the Case Study and Evaluation Methodology of Operational Availability for a Naval Ship using OT&E Data)

  • 백순흠
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.471-478
    • /
    • 2014
  • Navy forces of ROK asked for more than 90% operational availability in the requirement document of combat ship. This study proposes the evaluation methodology of operational availability with the evaluation process, calculation formula, analysis of operational test data. As the case study, the developed methodology is proved to apply for 00 batch-I naval ship using the data to be acquired during the operational test period. The operational availability by test data was 90.03%, and it was satisfied with objective value 90%. The paper will contribute not only to establish the evaluation methodology of operational availability for combat ship but also other general weapon system.

선박조종성능 평가를 위한 실선 실험연구 (A Study on Ship's Maneuverability Evaluation by Real Ship Test)

  • 임남균;한송희;구엔탈날라이
    • 해양환경안전학회지
    • /
    • 제17권4호
    • /
    • pp.383-389
    • /
    • 2011
  • 선박 성능과 항해 안전의 관점에서 선박조종 특성을 아는 것은 선박 설계에서 중요한 일이다. IMO 규정에 의하면 만재 적하된 even 조건(트림=0)에서 몇가지 선박 조종 기준이 제시되어 있다. 그러나 선박은 일반적으로 항상 만재 적재 조건으로 운항되지 않는다. 따라서 선박이 IMO 규정을 만족시키고, 모든 적재 조건에서 안전하게 항행하도록 하기 위해 다양한 적재 조건에서 선박 조종 특성을 추정해야 한다. 본 논문에서 우리는 실선 실험과 시뮬레이션을 수행하여 조종특성을 조사하였다. 시뮬레이션 결과와 비교하였을 때 실선실험은 시뮬레이션 값 및 이전 연구와 그 경향이 일치한다. 실 해역에서 얻은 조종실험 데이터가 선박 조종성능 추정에 활용 될 수 있음을 확인하였고, 실시한 실해역 실험을 통하여, 선박 운항 상태에 따른 조종성의 변화를 추정할 수 있었다.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발 (A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System)

  • 김인일;최중효;조학종;서흥원
    • 한국CDE학회논문집
    • /
    • 제10권1호
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

선회권시험방법에 의한 신침로거리의 산정방법에 관한 연구 (The Method to Calculate the New Course Distance of a Ship by Turning Circle Test Method)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제30권4호
    • /
    • pp.299-311
    • /
    • 1994
  • The new course distances of a ship are one of the important factors of the safety handling as the indices to indicate directly her abilities of course alteration. Recently, International Maritime Organization (IMO) exhorts that all vessels should use maneuvering booklets in which are drawn the curves of new course distances obtained from the test of measuring them and noted other maneuvering performance standard in various navigation conditions. This paper describes the method to calculate many new course distances for many rudder angles by turning circle test without observation or using other calculating methods. The main results are as follows: 1) The mean difference of the distances between two new course distances by the turning circle test and heading test of the experimental ship was about 7.7% vaules of the ones by the heading test. when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$ . These new course distances were therefore found to be small in difference of those. 2) The mean difference of the distance between two new course distances by the turning circle test and the maneuvering indices of the experimental ship was about 4.5% values of the ones by the maneuvering indices, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$, these new course distances were therefore found to be small in difference of those. 3) The mean difference of the distance between two new course distances by the turning circle test and the observation of the experimental ship was about 6.1% values of the ones by the observation, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$. These new course distances were therefore found to be small in difference of those. 4) It is confirmed that many new course distances for many angles can be calculated easily by using the method of ship's simple turning circle test, without observation or using the maneuvering indices and heading test method. 5) It is considered to be helpful for the safety of ship handling to draw curves of new course distances by turning circle test and $\phi_4$ - $\phi_2 by heading test, and utilize them at sea.

  • PDF

Research on total resistance of ice-going ship for different floe ice distributions based on virtual mass method

  • Guo, Wei;Zhao, Qiao-sheng;Tian, Yu-kui;Zhang, Wan-chao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.957-966
    • /
    • 2020
  • This paper presents the virtual mass method to implement the prediction of total resistance for ice-going ship in floe ice region based on the combined method of CFD and DEM. Two ways of floe ice distribution are adopted for the analysis and comparison. The synthetic ice model test has been conducted to determine the optimal virtual mass coefficients for the two different floe ice distributions. Moreover, the further verification and prediction are developed in different ice conditions. The results show that, the fixed and random distributions in numerical method can simulate the interaction of ship and ice vividly, the trend of total resistance varying with the speed and ice concentration obtained by the numerical simulation is consistent with the model test. The random distribution of floe ice has higher similarity and better accuracy than fixed distribution.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Hou, Dai-Jin;Hamada, Masaaki;Nakama, Yoshiyasu;Kouguchi, Nobuyoshi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.49-55
    • /
    • 2006
  • Kinematic GPS provides quite good accuracy of position in cm level. Though K-GPS assures high precision measurement in cm level on the basis of an appreciable distance between a station and an observational point, but it has measurable distance restriction within 20 km from a reference station on land. So it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction. In this paper, the velocity integration method to get the precise velocity information of ship is explained. Next two experimental results (Zig-zag maneuvering test and Williamson turn) as the ship's maneuvering test and also the experimental results of leaving and entering port as slow speed ship's movement were shown. In these experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

  • PDF

2축 POD 여객선의 조종운동 수학모형 특성 연구 (Study of a Characteristics of Maneuvering Mathematical Model of Twin POD Cruise Ship)

  • 김연규;윤근항;김선영;손남선
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.429-435
    • /
    • 2013
  • Recently, to improve the safety and maneuverability at fairway around harbor the POD system has been equipped on a ship. And the interest about maneuvering characteristics of a cruise ship has been increasing. In this paper the mathematical model of maneuvering motion of a cruise ship with twin POD system in general speed and slow speed are presented. And the maneuvering coefficients of mathematical model are obtained from the captive model tests using CPMC(Computerized Planar Motion Carriage). Computer simulation using mathematical model in general speed and slow speed are carried out and compared with the results of free running model test with the same model ship. The differences between the mathematical models are compared and discussed. In this paper the mathematical models, the results of captive model test and simulation results are presented.