• 제목/요약/키워드: Test of tensile load

검색결과 744건 처리시간 0.029초

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.

상대변위측정기를 이용한 지반앵커의 보유인장력 측정 (Measurement of Retaining Tensile Load with the Relative Displacement Detector of Ground Anchors)

  • 정현식;한광석;이영생
    • 한국지반공학회논문집
    • /
    • 제33권10호
    • /
    • pp.59-69
    • /
    • 2017
  • 지반내 근입된 앵커의 인장력은 시간이 경과하면서 점차 변화하게 되는데 이때 초기 인장력의 변화는 보통 정착헤드의 정착조건과 인장자재의 기계적 특성에 의해 1차적으로 감소하게 되며, 이후 추가적인 인장력의 변화는 대부분 정착장의 정착조건과 주변 지반특성에 기인한 시간의존적인 정착거동에 좌우된다. 따라서 본 논문에서는 이러한 인장력 변화를 비교적 쉽게 측정 및 분석할 수 있는 상대변위측정기를 이용한 측정시스템에 대해서 연구하였다. 검토결과 실규모 모형시험을 통해서 본 측정시스템의 적용성을 확인 하였으며, 또한 풍화암에 정착된 지반앵커를 대상으로 실시한 현장 시험결과와도 유사함을 확인함에 따라 본 측정시스템의 적용성을 확인하였다. 그리고 초기인장력이 비교적 크게 감소된 시험앵커를 대상으로 추가적인 인발시험을 실시하였으며 이를 통해 인장형 앵커의 인발거동을 확인하였다.

종이의 특성에 영향하는 펄프 섬유특성의 정량적 해석(I) (Quantitative Analysis of Pulp Fiber Characteristics that Affect Paper Properties(I))

  • 이강진;박중문
    • 펄프종이기술
    • /
    • 제30권2호
    • /
    • pp.47-54
    • /
    • 1998
  • Refining is one of the most important processes of fiber treatment that provides optical and physical properties of final paper products. The evaluation method of refining progress is usually freeness (CSF) or wetness (SR) test because of its rapidity and convenience. However, there are some deficiencies in using freeness or wetness test to evaluate pulp fibers accurately because its results are more influenced by fines contents than extent of fibers treatment. The objective of this study is to show the deficiency of wetness in evaluating the refining process. For this, beating is done by varying the beating load. Handsheets are made after beating until 25 and $32^{\circ}C$ SR, and then paper properties are measured. Refined fibers are analyzed by fiber length, fines contents, curl, kink, WRV, and zero-span tensile strength. The results show that longer beating time is required to reach the same wetness at lower beating load. There are differences in the average fiber length, distribution curve of fiber length, fines contents, curl, kink, WRV of long fiber fraction, drainage time, and zero-span tensile strength of rewetted sample at different beating load. At the low beating load in the same wetness, apparent density, breaking length, burst strength, and tear strength are higher, while opacity and air permeability are lower than those of the high beating load. Using Page s equation, which shows the relationship among tensile strength, intrinsic fiber strength, and interfiber bonding strength, interfiber bonding strength is calculated and analyzed to explain final paper properties. At $25^{\circ}C$ SR, interfiber bonding strength is only slightly higher at 2.5kgf beating load, while the intrinsic fiber strength is substantially higher. At $32^{\circ}C$ SR, intrinsic fiber strength is a little bit higher at 2.5kgf beating load, and interfiber bonding strength is remarkably higher than those of 5.6kgf beating load. These results can be used to explain the different properties of the final paper at selected beating loads.

  • PDF

윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구 (An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis)

  • 김태우;최지영;이현종;백종은;엄병식
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

선체 박판구조의 용접변형 제어에 관한 연구(II) (On the Weld-Induced Deformation Control of Ship's Thin Plate Block (II))

  • 이주성;김철호
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.504-508
    • /
    • 2007
  • In the case of thin plate blocks, buckling deformation due to longitudinal shrinkage is the most important weld-induced deformation. This paper is concerned with developing the formula to predict the longitudinal shrinkage due to welding, in which mechanical tension effect in welding direction is accounted for. For this purpose, bead on plate welding test has been carried out for the 27 thin plate specimens with varying welding conditions and magnitude of tensile load. Empirical formula of predicting the longitudinal shrinkage has been derived based on the results of welding test, in which effect of mechanical tension is included. The derived formula can be usefully used in predicting the level of tensile load to reduce the longitudinal shrinkage.

마이크로 코일 스프링의 스프링 상수 평가 (Evaluation of the Spring Constant of a Micro Coil Spring)

  • 이종길;전병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.255-259
    • /
    • 2001
  • The spring constant of a micro coil spring was measured by uniaxial tensile test. The inner diameter of it is $35{\mu}m$ and the pitch size is about $23{\mu}m$. A suing constant measurement system was developed. It consists of control units, load cell units, linear stages and several specially designed jigs and fixtures. Load and displacement are measured using a commercial load cell of 1000g capacity and a magnetic scale of $0.5{\mu}m$ resolution. In this study, a method to measure the spring constant of micro coil spring is presented and the relationship between misalignment of specimen and measurement error is discussed.

  • PDF

반복 인장 하중을 받는 YP47 극후판 Butt 용접부의 잔류응력 재분포에 관한 연구 (A Study on Evaluation of Residual Stress Redistribution for FCA Butt Weldment of Ultra-Thick YP47 Steel Plate under Tensile Cyclic Load)

  • 강봉국;이동주;신상범
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.28-33
    • /
    • 2016
  • The purpose of this study is to evaluate the redistribution of transverse residual stress in the multi-pass FCA butt weld of YP47 in the hatch coaming top plate of ultra large size containership under the tensile cyclic load. In order to do it, the configuration of modified H type specimen including restraint length was first designed to simulate the restraint condition of the butt weld in hatch coaming top plate. FE analysis procedure for evaluating the transverse residual stress was verified by comparing the calculated mean and surface residual stresses with the measured results in the test specimen. After that, the effect of the cyclic load on the redistribution of transverse residual stress was evaluated by comprehensive FEA. From the results, it was found that although the maximum transverse residual stress decreased with an increase in the applied maximum load, the effect of the cyclic load on the mean residual stress is small enough to be negligible. It is because the maximum stress of the ship corresponding to the probability of 10E-8 is less than 70% of yield stress of the weld.

PHC말뚝의 새로운 이음방법 개발 (Development of New Joining Method for PHC Piles)

  • 백규호;이중희;박용부
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.81-88
    • /
    • 2005
  • In soft grounds with deep bearing stratum, the PHC piles are generally joined by welding or prefabricated method. However, the existing joining methods have some problems in a side view of workability, quality and cost etc. In this study, a new joining method of PHC piles, which removes the problems of the existing methods, is developed. Static and dynamic load tests in fields as well as laboratory tests such as tensile and bending tests are conducted to investigate the workability and structural safety of PHC piles joined by the new method. The test results show that tensile and bending resistances of the joint part are higher than those of PHC pile itself. PHC piles with 400mm diameter are joined by the new method within 4 minutes while 25 minutes for welding method. Bearing capacities of the PHC piles joined by the new method are nearly the same as those of jointed PHC piles by welding method.

  • PDF

FPD에 사용되는 고분자 재료의 기계적 물성특성 연구 (Micro Scale Mechanical property of Polymeric materials for FPD(Flat Panel display))

  • 이낙규;이혜진;이형욱;정유진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.220-224
    • /
    • 2005
  • The technology trend of Flat Panel Display (FPD) equipments have been demanded that there are compact and multi-function. Therefore, nano/micro scale patterned on polymeric materials of Back Light Unit (BLU) in Liquid Crystal Display (LCD) that has been investigated. This paper describes a series of Horizontal Type Micro Tensile Tester that were carried out to investigate the load strain distance performance of typical polymeric material sheets. The polymeric materials film that micro size shaped specimens for tensile test are used by Cold-Isostatic-Press (CIP). Test equipment is Horizontal type Micro Tensile Tester that is presented to measure the micro scale mechanical property of thin film for FPD. This paper presents which easy testing tools measure for micro patterned on polyethylene (PET) specimens.

  • PDF