• Title/Summary/Keyword: Test of tensile load

Search Result 744, Processing Time 0.027 seconds

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

A Study on the Looseness Property of a Tiebar (타이바의 풀림 특성에 관한 연구)

  • Bae B.K.;Park H.S.;Seok C.S.;Park D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1363-1366
    • /
    • 2005
  • The tiebar is used by joint for keeping from deformation by conserving tensile load between two structure. The tiebar, bolt joining type, is combined by tiebar and clevis like bolt and nut. By coupled, it maintains tensile load. While it goes through repeated load, it occurs to loose because joining force between clevis and nuts is reduced. So, continuos maintenance is needed such as making tighter periodically, repairing the broken part and so on. For that reason, this paper calculates necessary torque unfastening joint for conventional tiebar and presenting tiebar theoretically and then consider the reason that conventional bolt-typed tiebar unties. Also, through vibration untied test for two types of tiebar we confirm that presenting tiebar have a improvement of unfastening when we compare with the conventional one.

  • PDF

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

Development of High Tension Tensile Tester for Transmission Line (송배전 선로 고장력 인장시험기 개발)

  • Shin, Dong-Hwa;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.219-225
    • /
    • 2018
  • In this paper, for the testing of tensile strength of dead-end clamp used in transmission line, resulting values were estimated by designing and producing the horizontal version of widely-used vertical tensile tester. Tensile strength test of dead-end clamp for transmission line is essential for quality test of products. Moreover, tensile tester is an equipment that requires high level of reliability which needs to be examined through sampling tests commensurate with total inspection. Frames of tensile tester were made up of H-beams so that it can endure more than 20 [tons] of load capability and the test was implemented for 60[seconds] applying five types of tension. In consequence, the tester could withstand up to 21,600[kg] of weight as well as all types of tension. This newly developed horizontal tensile tester can be utilized in figuring out properties of various materials by estimating tensile strength of materials such as metal, rubber and fiber.

Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성)

  • Lee, Su-Jin;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure (가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구)

  • Kim, In-Tae;Chang, Hong-Ju;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.399-409
    • /
    • 2010
  • Steel structures are threatened to reduce load-carrying capacity as the cross section is decreased by corrosion. However, there has been no method in definitely evaluating residual load-carrying capacity and the effect of corrosion to the load-carrying capacity of steel. This study evaluated tensile residual load-carrying capacity of corroded steel plates by using tensile tests of specimens, which were selected from the web of temporary structure's main beam. After the surface shapes were measured and tensile tests were examined, the rust of 21 corroded specimens was, first of all, removed using a chemical method. From the tensile test result, which of reference specimens that was picked off at the flange of the same main 13-mm-thick beam and corroded specimens were based, surface geometry and correlation with the reduction of corroded thickness and strain, yield strength or tensile strength was established as constant numbers. Effective thickness of corroded steel with irregular cross sections could be calculated using average residual thickness and standard deviation. The irregular cross sections could be the evaluated tensile strength that is equalized to non-corroded uniform steel's regardless of corrosion. Also, reasonable measuring intervals of residual thickness could be proposed by using this result to apply for executive work.

High-temperature Deformation Behavior of 5052 Aluminum Alloy for Hot Shearing Process (고온전단가공을 위한 5052 알루미늄 합금의 고온 변형거동)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • Hot shearing is a method of producing various high-quality planar machine parts by using reduced punch load. In order to predict the results of this process, the deformation behavior of work material at elevated temperatures need to be studied. In this research, a tensile test was carried out for 5052 aluminum alloy at high temperatures of $240-540^{\circ}C$ and strain rates of 0.001-0.1/s. The results of the tensile tests were studied to predict the deformation of the alloy during the hot shearing process. The results showed that hot shearing within a temperature range of $340-440^{\circ}C$ and a strain rate rage of 0.001-01/s will be the most effective in reducing punch load and increasing the sheared edge in the case of 5052 aluminum alloy.

Stress intensity factors for an interface crack between an epoxy and aluminium composite plate

  • Itou, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • A cracked composite specimen, comprised of an epoxy and an aluminium plate, was fractured under a tensile load. In this paper, two crack configurations were investigated. The first was an artificial center crack positioned in the epoxy plate parallel to the material interface. The other was for two edge cracks in the epoxy plate, again, parallel to the interface. A tensile test was carried out by gradually increasing the applied load and it was verified that the cracks always moved suddenly in an outward direction from the interface. The d/a ratio was gradually reduced to zero, and it was confirmed that the maximum stress intensity factor value for the artificial center crack, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface crack,$K_{{\theta}{\theta}}^{ifc\;max}$ (where: 2a is the crack length and d is the offset between the crack and interface). The same phenomenon was also verified for the edge cracks. Specifically, when the offset, d, was reduced to zero, the maximum stress intensity factor value, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface edge crack.

Field Pull-out Test and Numerical Analysis for Multi-rebar Nail (다철근 네일의 현장인발시험 및 수치해석)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.43-52
    • /
    • 2008
  • In this study, the verification test and creep test for both a single-rebar nail and a multi-rebar nail are carried out to investigate a tensile strength for both nails. The adhesion effects between a rebar and a cement grout, a mobilized frictional force induced by pull-out load, and load transfer characteristics are examined. The results obtained from the field pull-out tests and from the numerical analysis using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method are analyzed and compared for a single-rebar nail and a multi-rebar nail. The field pull-out test results for a multi-rebar nail relative to a single-rebar nail show that a tensile failure load is relatively large and the pull-out loads are well transferred to the ground in deep depth.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.