• Title/Summary/Keyword: Test of constructability

Search Result 99, Processing Time 0.031 seconds

A case study on design and construction of daylighting system of office building (사무용 건축물의 자연채광 설계 및 시공사례 연구)

  • Kim, Ilho;Choi, Yongjun;Park, Kyoungwoo;Lee, Sungjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • Throughout history, daylight has been a primary source of lighting in buildings, supplemented originally with burned fuels and more recently with electrical energy. Before daylight was supplemented or replaced with electric light in the late 19th-century, consideration of good daylight strategies was essential. As we entered the mid-20th-century, electric light supplanted daylight in buildings in many cases. Fortunately, during the last quarter of the 20th-century and early years of this century, architects and designers have recognized the importance and value of introducing natural light into buildings. There are many simple strategies that can enhance daylighting and reduce the need for electric lights. Good quality daylight is always welcome, but remember that the electric lights must be dimmed or shut off in order for daylighting to save energy. We designed and built mirror systems and vertical daylighting devices to improve daylight condition of office buildings in bad condition because urban density is getting higher. This case study aims to analysis the principles and characteristics of mirror systems and vertical daylighting devices and selected the method that can improve constructability. The results of this study are going to use the back data to set-up the design standards. Hereafter we're going to progress the performance test and product the design manual to improve applicability of daylighting systems at design phase.

  • PDF

Analysis of Nonlinear Seismic Behavior of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details (특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 비선형 내진거동 해석)

  • Yoon, Sung-Joon;Lee, Kihak;Chun, Young-Soo;Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • In this paper, analytical models for reinforced concrete shear wall systems designed based on Korean Building Code (KBC2009) are proposed, which have special and semi-special seismic details and are compared with experimental results for a verification of analytical models. In addition, semi-special seismic details aimed to improve constructability and enhance economic efficiency were proposed and evaluated. The analytical models were performed based on nonlinear static and dynamic analysis. Through the nonlinear analyses, two seismic details showed the similar seismic behavior from the cyclic test and the analytical models for the two different seismic details represented the behavior in terms of the initial stiffness, maximum strength and strength degradation. And newly proposed seismic details(semi-special) provided with similar hysterestic behavior as well as the maximum drift.

A Study in the Water Leakage Prevention around the Windows with the Stone Materials in the Apartment House (공동주택 외부 석재마감에 따른 창호주위 누수방지에 관한 연구)

  • Yun, Hong-Jung;Cho, Tae-Jea
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.117-121
    • /
    • 2006
  • This study intends to suggest the effective methods for water leakage prevention around the windows in stone works to up-grade the outdoor public space that has been taken much portion of apartment housing trends. The subjects of the study was selected among the domestic subcontractors of stone works. There are four methods for water leakage prevention around the windows; Firstly, the painting water-proof method after the masonry. Secondly, the urethane water-proof method after galvanizing panels on the gap. Thirdly, the separation method between stone and substructure and the last one is water-proof method that they put some water-proof screen between stone and substructure with the EPDM sheets. According to the analysis of the water-proof effects, constructability and planning, we could approach to conclusion that the most influent items to the water-leakage are the filling material's deformation, the state of oxygenation and deterioration of work skill. Among the water-proof methods in construction the EPDM sheet is most excellent water-proof method to meet the technical conditions. However, we have to apply it to stone works as a water-proof method for the decrease of the leakage defects after standardizing the materials, test and construction skill because there are many work skills according the subcontractors.

  • PDF

Field Performance of Reinforced Earth Wall with Steel Framed-Facing (강재틀 보강토옹벽에 대한 현장 시험시공)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Kim, Ju-Hyong;Seo, Chang-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.39-48
    • /
    • 2007
  • This paper introduces a recently developed reinforced earth wall system with steel framed-facing. The new system incorporates a steel-framed facing that might be assembled on-site and steel strip or geogrid type reinforcements for backfill area. In order to enhance scenery view design of the wall construction, dual-structured facing is proposed in which room for planting space locates in the front of facing. A reinforced earth walls using the proposed system was constructed to verify constructability of the proposed system and facing movement and tensile characteristics of reinforcement were measured to understand the mechanical behavior.

  • PDF

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

A Study on Constructability Estimation of Multi-component High Fluidity Concrete based on Mock-up Test (모의실험체에 의한 다성분계 고유동 콘크리트의 시공성능 평가에 관한 연구)

  • Kwon, Ki-Joo;Noh, Jea-Myoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • As structures become larger, taller, and more diverse, a high degree of technology and expertise are required in the construction industry. However, it has been becoming difficult to construct under severe conditions and to fulfill the high performance needs of structures due to a lack of skilled construction engineers. To compensate for these weak points, high-performance concrete and performance specifications have been developed. The application of reliable high-fluidity concrete, which is one of these efforts, is expected to be effective in terms of overcoming severe conditions, reducing the number of workers required, and shortening the construction period. In order to apply high fluidity concrete in the field, practical mock-up tests were carried out to estimate whether self-compaction concrete could satisfy constructability needs. From the results, it was verified that the multi-component high fluidity concrete has excellent flowability in practical structures. In addition, it was shown that the temperature distribution in the concrete due to hydration heat is satisfactory. As a result, it is judged that multi-component high fluidity concrete can be utilized as an effective building material for various structures, including structures related to the electric power industry.

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.

A Study on the Optimum Cross-section and Tendon Profiles of 60 m span Half-Decked PSC Girder Bridge (Half-Deck을 포함한 60 m 경간 PSC 거더의 단면 및 텐던 프로파일 최적화 연구)

  • Kim, Tae Min;Kim, Do-Hak;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.417-424
    • /
    • 2011
  • This study focused on development of 60 m span PSC girder considering not only structural performance, but also economical efficiency and constructability including from the improvement of cross-section to the tendon profiles in sequence. Bulb-T type cross section was derived from optimization and actual possibilities to design a bridge were assessed through cross section evaluation. Tendons were also arranged efficiently so that the girder could resist the service load effectively. After developed girder was applied to a sample bridge, result of finite element analysis proved all load steps were satisfied with the allowable stress. Furthermore, it seemed that sufficient redundancy will be available to design a bridge safely. Based on these, a full-scale 60 m span girder was fabricated and 4 point bending test was performed. An initial crack occurred over twice of the service load in this experiment, which establishes adequate structural performance. 60 m span Half-Decked PSC girder developed in this study has a lower height for the given span which resulted from cross section improvement and efficient tendon layout. This girder also has not only the structural advantage, but also advantages in economical efficiency and constructability.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar (이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.