• Title/Summary/Keyword: Test Validation

Search Result 1,786, Processing Time 0.029 seconds

Development and Validation of an Integrated Healthy Workplace Management Model in Taiwan

  • Fu-Li Chen;Peter Y. Chen;Chi-Chen Chen;Tao-Hsin Tung
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • Background: Impacts of exposure are generally monitored and recorded after injuries or illness occur. Yet, absence of conventional after-the-effect impacts (i.e., lagging indicators), tend to focus on physical health and injuries, and fail to inform if workers are not exposed to safety and health hazards. In contrast to lagging indicators, leading indicators are proactive, preventive, and predictive indexes that offer insights how effective safety and health. The present study is to validate an extended Voluntary Protection Programs (VPP) that consists of six leading indicators. Methods: Questionnaires were distributed to 13 organizations (response rate = 93.1%, 1,439 responses) in Taiwan. Cronbach α, multiple linear regression and canonical correlation were used to test the reliability of the extended Voluntary Protection Programs (VPP) which consists of six leading indicators (safe climate, transformational leadership, organizational justice, organizational support, hazard prevention and control, and training). Criteria-related validation strategy was applied to examine relationships of six leading indicators with six criteria (perceived health, burnout, depression, job satisfaction, job performance, and life satisfaction). Results: The results showed that the Cronbach's α of six leading indicators ranged from 0.87 to 0.92. The canonical correlation analysis indicated a positive correlation between the six leading indicators and criteria (1st canonical function: correlation = 0.647, square correlation = 0.419, p < 0.001). Conclusions: The present study validates the extended VPP framework that focuses on promoting safety and physical and mental health. Results further provides applications of the extended VPP framework to promote workers' safety and health.

The Development and Validation of BASS(Bi-axis Analogue Sun Sensor) Stimuli Equipment for FM Polarity Test (2축 아날로그 태양센서 극성시험장치 개발 및 검증)

  • Park, Young-Woong;Lee, Sang-Sub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.594-599
    • /
    • 2017
  • In this thesis, the development and the verification of the test-aid are described, providing various attitude errors through the electric stimulus to the Sun sensor. This test-aid for 2-axis analogue Sun sensor is used for polarity test in the assembly stage for GK2 satellite. The test-aid used for GK2 satellite is for COMS satellite and, due to the failure risk, manufactured by domestic company. The characteristics of the COMS test-aid used for GK2 satellite and the manufactured test-aid are showed with similar through the several tests. In this thesis, there are conformed the capability for replacing of test-aid because the characteristics of the manufactured test-aid is acquired same as that of the COMS test-aid using the controller tuning functions.

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Layout Analysis of Automotive Brake Hose Using the Finite Element Method (유한요소법을 활용한 자동차용 브레이크 호스의 변형 모드 분석)

  • Han, Seong-Ryeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.96-101
    • /
    • 2013
  • Automotive brake system is an essential element for the safety. The system is powered by the circulation of brake oil. A braker hose is used for the circulation of the oil in this system. Layout of the hose changes according to the steering and stress occur in the hose. A lot of the durability tests are performed in order to prevent serious problems such as hose bursting by the accumulation of the stress before setting an optimized hose layout on automobile. The test is conducted for the layout which is same such as set in automobile. In the test, brake hose layout shall exercise the same mode of thousands of times under the high temperature and periodic pressure condition and then the damage of the tested hose is inspected. This test, however, has a disadvantage of heavy consumption of time and money. In order to compensate for these drawbacks, the finite element method(FEM) study was performed to predict the changes in the layout of the brake hose. In this study, the FEM results and the test results were compared and the validity was verified. The radius of curvature of the FEM and test at the same positions were especially investigated for the validation. Also, this study will be used as the basis of research on the life prediction of brake hose.

Introduction to Construction of a Turbopump Real-Propellant Test Facility (터보펌프 실매질 시험설비 구축에 대한 소개)

  • Kim, Jin-Sun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.835-840
    • /
    • 2011
  • The development of a turbopump is fundamental to have an independent LRE(liquid rocket engine) for KSLV-II. Recently, the detail design of a turbopump real-propellant test facility based on liquid oxygen and kerosene has been performed to structure the test facility for the experimental validation of the turbopump. In this paper, the design requirements of the turbopump and the specifications of the test facility was presented and the representative sub-facilities were explained on the basis of the design results. Also, the uncertainty of the sub-facilities which could be appeared during the operation was removed in advance through the simulation method and the experimental verification.

  • PDF

Airspeed Calibration of a Light Airplane via Flight Test (비행시험을 통한 경비행기의 속도계 보정)

  • Lee, Jung-Hoon;Yoo, Si-Yoong;Lee, Jang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.629-634
    • /
    • 2008
  • This paper presents the flight test procedure and the results for the airspeed indicator calibration of a light airplane the name of ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation to get the certification. The flight tests for airspeed position error calibrations are conducted using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane. Also system to system method is applied in order to calibrate the airspeed indicator of the cockpit. The flight test is conducted at the basis of the 'Korean Airworthiness Standard' which is the regulation of Korean Ministry of Construction and Transportation. The airspeed error range for the testboom and the airspeed indicator are determined to $-0.75{\sim}+0.75$ knot and to $-4.0{\sim}+2.0$ knots, respectively. The calibration results are applied to ChangGong-91 Flight Operation Manual.

Maneuvering Hydrodynamic Forces Acting on Manta-type UUV Using CFD

  • Lee, Seong-Eun;Lee, Sung-Wook;Bae, Jun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • In this study, we investigate surge force, heave force, and pitch moment, which are vertical plane hydrodynamics acting on Manta-type unmanned underwater vehicles (UUVs), using a model test and computational fluid dynamics (CFD) simulation. Assessing the maneuvering hydrodynamic characteristic of an underwater glider in the initial design stage is crucial. Although a model test is the best approach for obtaining the maneuvering hydrodynamic derivatives for underwater vehicles, numerical methods, such as Reynolds averaged Navier-Stokes (RANS) equations, have been used owing to their efficiency in terms of time and cost. Therefore, we conducted an RANS-based CFD calculation and a model test for Manta-type UUVs. In addition, we conducted a validation study through a comparison with a model test conducted at a circular water channel (CWC) in Korea Maritime & Ocean University Furthermore, two RANS solvers (Star-CCM+ and OpenFOAM) were used and compared. Finally, the maneuvering hydrodynamic forces obtained from the static drift and resistance tests for a Manta-type UUV were presented.

A Test Result on the Positional Accuracy of Kompsat-3A Beta Test Images

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.133-142
    • /
    • 2016
  • KOMPSAT-3A (KOrea Multi-Purpose SATellite-3A) was launched in March 25 2015 with specification of 0.5 meters resolution panchromatic and four 2.2 meters resolution multi spectral sensors in 12km swath width at nadir. To better understand KOMPSAT-3A positional accuracy, this paper reports a test result on the accuracy of recently released KOMPSAT-3A beta test images. A number of ground points were acquired from 1:1,000 digital topographic maps over the target area for the accuracy validation. First, the original RPCs (Rational Polynomial Coefficients) were validated without any GCPs (Ground Control Points). Then we continued the test by modeling the errors in the image space using shift-only, shift and drift, and the affine model. Ground restitution accuracy was also analyzed even though the across track image pairs do not have optimal convergence angle. The experimental results showed that the shift and drift-based RPCs correction was optimal showing comparable accuracy of less than 1.5 pixels with less GCPs compared to the affine model.

Verification of Required Pressurant Mass Prediction Program for Propellant Tank through Flight Test Data (비행시험 데이터를 통한 추진제탱크 가압가스 요구량 예측 프로그램 검증)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.723-725
    • /
    • 2010
  • Calculation program to predict required pressurant mass for propellant tank was verified through flight test data. This program was already developed and verified through ground test data, but to increase reliability of program, it was compared with flight test data of KSR-III launched in 2002. Because pressurant temperature incoming to propellant tank was not measured in flight test, that was assumed in calculation program. Required pressurant mass and inside temperature of oxygen tank dome was compared. Validation of calculation program was verified by showing required pressurant mass accuracy of 6%.

  • PDF

A Study on Resistance Test of Icebreaker with Synthetic Ice (합성 얼음을 사용한 쇄빙선 저항시험에 대한 연구)

  • Song, Yun-Young;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.389-397
    • /
    • 2007
  • This research describes a framework to compare and analyze the icebreaker(Terry Fox) resistance in pack ice condition between with a refrigerated ice and a synthetic ice. Model tests with a refrigerated ice have been conducted at Institute for Ocean Technology (IOT/NRC) and the tests with a synthetic ice were conducted at Pusan National University towing tank. For the validation of further tests of measurement and accuracy, the open water tests were first carried out with same model ship to compare the test results of both Institutes. Two different size of the wax-type synthetic ice were used and tests were conducted in pack ice of three different concentration ice conditions. The test results show that the difference of resistance between with synthetic and with refrigerated ice becomes larger according to the increase of ship speed. Although the quantity of resistance difference is not so small in high speed range, the present study is predicted to be used as a useful correlation between synthetic and refrigerated ice.