• Title/Summary/Keyword: Test Rod

Search Result 604, Processing Time 0.022 seconds

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Vibration Analysis of Beam Supported by Plate Type Springs Considering a Contact (접촉해석이 연계된 판형 스프링 지지보의 진동해석)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.384-392
    • /
    • 2003
  • The fuel rods in the Pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster(fuel assembly). The fuel rods vibrate within the reactor due to coolant flow. Since the vibration, which is called flow-induced vibration(FIV) can wear away the surface of the fuel rod, it is important to understand it's vibration characteristics. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the Previous FE model and the new one are compared with those of experiment for a single-spanned rod supported by two ND spacer grids. The results of the new model showed good agreement with the experiment compared with those of previous model. In addition. the new FE model is applied to the vibration analysis for the dummy rod of 2.189 mm tall continuously supported by five ND spacer grids. It is also obtained that the analysis results of the new FE model well agreed to experiment ones as the single-spanned rod.

Vibration Analysis of Beam Supported by Springs Considering a Contact (접촉해석이 연계된 스프링 지지보의 진동해석)

  • 최명환;강홍석;송기남;윤경호;김형규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1216-1221
    • /
    • 2002
  • The fuel rods in the pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster (fuel assembly). The fuel rods are vibrating within the reactor due to coolant flow. Since the vibration, what is called flow-induced vibration(FIV), can wear away the surface of the fuel rod, it is important to understand the vibration characteristics of it. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the previous FE model and the new one are compared with those of experiment fur a single-spanned rod supported by two ND spacer grids. The results by the new model show good agreement to experiment as compared with the ones by previous model. In addition, the new FE model is applied to the vibration analysis fur the dummy rod of 2.19 m tall continuously supported by five ND spacer grids. It is also obtained that the analysis results by the new FE model well agree to experiment ones as the single-spanned rod.

  • PDF

Vibration Characteristics of the PWR Fuel Rod Supported by New Doublet Spacer Grids (새이중판 지지격자로 지지된 경수로용 연료봉의 진동특성)

  • 최명환;강흥석;윤경호;김형규;송기남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.905-910
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the fm spring. And then, the result of the FE analysis is compared with that of the modal test. The natural frequencies as well as the mode shapes calculated by the proposed contact models have a greater similarity to the test results than those by the previous beam-spring model. In addition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed; one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former. Finally, the vibration displacements are measured in the range of 0.112-0.214mm for the excitation force of 0.25-0.75 N.

  • PDF

Strengthening Capacity of Bridge Deck Strengthened with Carbon Fiber Rod and Polymer Mortar (고강도 폴리머 모르타르 및 탄소섬유 봉(Rod)으로 보강된 교량 바닥판의 보강성능)

  • Sim Jongsung;Moon Do-Young;Ju Mm-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.213-220
    • /
    • 2004
  • This paper deals with an enhanced structural capacity of reinforced concrete bridge deck strengthened with carbon fiber rod (CFR) which is subjected to monotonic and cyclic loads. Strengthening variables considered in this test were evenly and unevenly strengthening type. To evaluate strengthening capacity for these two strengthening types, load-carrying capacity and crack and failure pattern from the failure test were analyzed and fatigue response were examined. According to the test results, all the strengthened specimens showed punching shear failure as a result of premature failure of bonding interface between mortar and concrete. In the case of strengthening capacity, it was observed that the strengthened specimens was more effective in strength, stiffness and fatigue endurance limit than the unstrengthened specimen. In addition, the unevenly strengthening method (CR-UE) was more effective than the evenly strengthening method (CR-E).

An Experimental Study on the Vibration of the PWR Fuel Rod Supported by the Side-sloted Plate Springs (측면 절개된 판형 스프링으로 지지된 경수로 연료봉 진동의 실험적 고찰)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.798-804
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847 mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software Is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the ND spring. And then, the results of the modal testing are compared with those of the FE analysis. The natural frequencies as well as the mode shapes obtained by the experiment have a greater similarity to the results by the contact model than the previous beam-spring model. In audition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed : one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former Finally, the vibration displacements are measured in the range of 0.l12∼0.214 mm for the excitation force of 0.25∼0.75 N.

Seismic Performance of an Existing Low-Rise Reinforced Concrete Piloti Building Retrofitted by Steel Rod Damper (강봉댐퍼로 보강한 기존 저층 철근콘크리트 필로티 건물의 내진성능)

  • Baek, Eun Lim;Oh, Sang Hoon;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.241-251
    • /
    • 2014
  • In this study, shaking table test was carried out to evaluate the seismic behavior and performance of low-rise reinforced concrete (RC) piloti structures with and without retrofit. The specimens were designed considering the characteristics of existing building with pilotis such as natural period, distribution factor of strength and stiffness between columns and core wall on the first soft story. The test for the non-retrofit specimen showed that damage was concentrated on the stiffer member on the same floor as the core wall failed by shear fracture whereas columns experienced slight flexural cracks. Considering the failure mode of the non-retrofit specimen, the retrofit method using steel rod damper was presented for improving the seismic performance of piloti structures. The results of the test for retrofit specimen revealed that the retrofit method was effective for controlling the damage as the main RC structural members were not destroyed and most of input energy was dissipated by hysteretic behavior of the damper.

An Experimental Study on PWR Nuclear Fuel Assembly Vibration (경수로 핵연료집합체 진동의 실험적 고찰)

  • 장영기;김규태;조규종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.82-87
    • /
    • 2003
  • Nuclear fuel with a big slenderness ratio is susceptible to flow-induced vibration under very severe conditions of high temperature, high flow and exposure to irradiation in nuclear reactor. The fuel assembly should, therefore, be designed to escape any resonance due to the vibration during the reactor operation, in particular, in case of the design changes. In addition, the amplitudes due to the grid vibration, the fuel rod vibration and the fuel assembly vibration should be minimized to reduce the grid-to-rod fretting wear. Fuel assembly vibration tests in air at room temperature and in water at high temperature have been performed to investigate fuel vibration behaviors. The frequency and damping during the test in air have been compared to those in water. Through the hydraulic test, the advanced assembly has been evaluated not to be susceptible to any resonance. In addition, the test data from the tests can be used to make fuel model and to evaluate grid-to-rod fretting wear.

  • PDF

Displacement Dependency and Capacity Evaluation According to the Cross-Sectional Shape and Aspect Ratio of Steel Rod Dampers (강봉댐퍼의 단면형상과 형상비에 따른 변위의존성 및 성능 평가)

  • Hyun-Ho Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.89-96
    • /
    • 2023
  • In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables were cross-sectional shape and aspect ratio. The 6th test specimens were made for performance test. From the test results, it was evaluated that the displacement dependence conditions of design code were satisfied in all specimens. And the strength effect according to the cross-sectional shape was minimal. As a result, the strength and energy dissipation capacity of the aspect ratio of 13.7 were evaluated as excellent.

Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test (봉충격시험에 의한 동합금의 동적 항복응력 결정)

  • 이정민;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.