• Title/Summary/Keyword: Test Probe

Search Result 675, Processing Time 0.023 seconds

Make Probe Head Module use of Wafer Pin Array Frame (Wafer Pin Array Frame을 이용한 Probe Head Module)

  • Lee, Jae-Ha
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.71-71
    • /
    • 2012
  • Memory 반도체 Test공정에서 사용되는 Probe Card의 Probing Area가 넓어지면서 종래에 사용되던 Cantilever제품의 사용이 불가능하게 되고, MEMS공정을 사용한 새로운 형태의 Advanced제품이 시장에 출현을 하였다. MEMS형의 제품은 다수의 Micro Spring을 MLC(Multi Layer Ceramic)위에 MEMS 공정을 사용하여 생성하는 방식으로서 MLC는 좁은 지역에 다수의 Pin을 생성 할 수 있는 공간을 만들어 주며, 또 다른 이유는 전기적 특성인 임피던스를 맞추고 다수의 Pin의 압력에 의하여 생기는 하중을 Ceramic기판으로 지탱하기 위한 목적도 있다. 이에 MLC와 같은 전기적 특성을 임피던스를 맞춘 RF-CPCB를 사용하여 작은 면적에 다수의 Pin접합이 가능한 방법을 마련한 후, 이 RF-PCB를 부착하여 Pin의 하중을 받는 Wafer와 유사한 열팽창을 갖는 Substrate를 사용하여 MLC를 대체하여 다양한 온도 조건에서 사용이 가능하며, 복잡하고 공정비가 많이 드는 MEMS 공정에 의한 일괄 Micro Spring 생성 공정을 전주 도금 또는 2D방식의 도금 Pin으로 대체하였으며, Probe Card의 중요한 물리적 특성인 Pin들의 정렬도를 마련하기 위해 Photo Process를 사용한 Wafer로 만든 Wafer Pin Array Frame을 사용하여 2D 제작 Pin을 일괄 또는 부분 접합이 가능한 방법으로 Probe Array Head를 제작하여 이들을 부착하여 Probe Array Head를 이전의 MEMS공정 방법에 비해 쉽고 빠르게 만들어 probe Card를 제작 할 수 있게 되었다.

  • PDF

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.

A Study On Fatigue Properties Of BeCu Thin Film For Probe Tip (프루브 팁용 BeCu 박막의 피로성질 연구)

  • Shin, Myung-Soo;Park, Jun-Hyub;Seo, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.256-259
    • /
    • 2008
  • An micro-probe tip must be manufactured using thin film to evaluate integrity of the semiconductor with narrow distance between pads. In this study, fatigue tests were performed for BeCu thin film which is used in micro-probe tip of semiconductor test machine. The thin film was manufactured by electro plating process, and the specimens were fabricated by wire-cut electric discharge method to make hour glass type specimen of $5000{\mu}m$ width, $29200{\mu}m$ length and $30{\mu}m$ thickness. The fatigue test of load control with 10Hz frequency was performed, in ambient environment. The fatigue cycles were tension-tension with mean stress, at stress ratio, R=0.1.

  • PDF

Narrow Resonant Double-Ridged Rectangular Waveguide Probe for Near-Field Scanning Microwave Microscopy

  • Kim, Byung-Mun;Son, Hyeok-Woo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.406-412
    • /
    • 2018
  • In this paper, we propose a narrow resonant waveguide probe that can improve the measurement sensitivity in near-field scanning microwave microscopy. The probe consists of a metal waveguide incorporating the following two sections: a straight section at the tip of the probe whose cross-section is a double-ridged rectangle, and whose height is much smaller than the waveguide width; and a standard waveguide section. The advantage of the narrow waveguide is the same as that of the quarter-wave transformer section i.e., it achieves impedance-matching between the sample under test (SUT) and the standard waveguide. The design procedure used for the probe is presented in detail and the performance of the designed resonant probe is evaluated theoretically by using an equivalent circuit. The calculated results are compared with those obtained using the finite element method (Ansoft HFSS), and consistency between the results is demonstrated. Furthermore, the performance of the fabricated resonant probe is evaluated experimentally. At X-band frequencies, we have measured the one-dimensional scanning reflection coefficient of the SUT using the probe. The sensitivity of the proposed resonant probe is improved by more than two times as compared to a conventional waveguide cavity type probe.

Development of Eddy Current Test Probe for Profilometry Inspection of Tube (원형튜브 단면형상검사용 와전류탐촉자 개발)

  • Lee, H.J.;Nam, M.W.;Lee, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.262-269
    • /
    • 1997
  • An eddy current probe ($8{\times}1$ multiple-element, surface scan) was successfully designed and fabricated at the KEPRI using the impedance equivalent circuit theory. The probe is intended for the detection of circumferential deformations (cross-section view) of the heat exchanger tubing that can occur due to corrosion, erosion, and denting. Optimum design parameters providing the highest sensitivity and signal-to-noise ratio, such as the coil dimensions, electrical characteristics, and test frequencies, were determined based on initial laboratory experiments conducted on the test specimen (SS304 tubing: OD : 9.68mm, wall-thickness : 0.47mm) containing artificial flaws (e.g., dents and corroded surface on tube OD) using the available Zetec-made probe. Using this parameters, a new probe was made and tested on an unknown specimen. The result indicated that the new probe is capable of detecting the circumferential deformation with the error of ${\pm}0.2%$ (0.022mm) of the tube O.D.

  • PDF

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

A Study on Fabrication and Characteristics of PZT Probe for Nondestructive Test (비파괴 검사를 위한 PZT 탐촉자의 제작 및 특성에 관한 연구)

  • 김철수;정규원;송준태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.613-619
    • /
    • 1998
  • Ultrasonic probes of 400kHz, 1MHz were fabricated using PZT-5Z plates. Epoxy was used for backing layer materials onthe plates. Nondestructive Test was carried using these probes. Pulse lobe width of impulse response was reduced 15.4% compare 1MHz with 400kHz and 96.6% compare 3MHz with 400kHz. The attenuation in aluminum was 2.05[dB/m] at 400kHz, 4/91[dB/m] at 1MHz, 7.35[dB/m] at 3HMz. Hole detection error of the first hole was 22.4% at 1HMz, 9.% at 3HMz, The second hole 11.6% at 1HMz, 4.7% at 3HMz. In the result of experiment of the hole detection error and resolution, 3HMz probe was the best among them.

  • PDF

A Simple and Rapid Methicillin-Resistant Staphylococcus aureus (MRSA) Screening Test Using a Mannose-Binding Lectin (MBL)-Conjugated Gold Nanoparticle Probe

  • So Yeon Yi;Jinyoung Jeong;Wang Sik Lee;Jungsun Kwon;Kyungah Yoon;Kyoungsook Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.698-705
    • /
    • 2023
  • Rapid diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for guiding clinical treatment and preventing the spread of MRSA infections. Herein, we present a simple and rapid MRSA screening test based on the aggregation effect of mannose-binding lectin (MBL)-conjugated gold nanoparticles (AuNP), called the MRSA probe. Recombinant MBL protein is a member of the lectin family and part of the innate immune system. It can recognize wall teichoic acid (WTA) on the membrane of MRSA more specifically than that of methicillin-sensitive Staphylococcus aureus (MSSA) under optimized salt conditions. Thus, the MRSA probe can selectively bind to MRSA, and the aggregation of the probes on the surface of the target bacteria can be detected and analyzed by the naked eye within 5 min. To demonstrate the suitability of the method for real-world application, we tested 40 clinical S. aureus isolates (including 20 MRSA specimens) and recorded a sensitivity of 100%. In conclusion, the MRSA probe-based screening test with its excellent sensitivity has the potential for successful application in the microbiology laboratory.

TEMPERATURE DISTRIBUTION OF THE IONOSPHERIC PLASMA AT FLAYER

  • Rhee, Hwang-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.269-274
    • /
    • 1997
  • Langmuir probe was housed in the sounding rocket to test the probe's performance and to find the environmental parameters at the F layer of the ionosphere. The gold plated cylindrical probe had a length of 14㎝ and a diameter of 0.096 ㎝. The applied voltage to the probe consisted of 0.9 sec fixed positive bias followed by 0.1 sec of down/up sweep. This ensured that the probe swept through the probe's current-voltage characteristic at least once during 1 second quiescent periods enabling the electron temperature to be measured during the undisturbed times of the flight. The experimental results showed good agreement of the temperature distribution with IRI model at the lower F layer. In the upper layer, the experimental temperatures were 100-200K lower than the IRI model's because of the different geomagnetic conditions: averaged conditions were used in IRI model and specific conditions were reflected in the experiment.

  • PDF

Ground Thermal Conductivity Test with A Wireless Probe (무선 전자식 장비를 이용한 지중열전도도 측정 기술)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul;Ko, Gun-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2381-2384
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic Response Test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless probe for hi-speed k determination was introduced in this paper. This technique using a wireless probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. As a result, the electronic wireless probe can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of local heat flow, etc.

  • PDF