• Title/Summary/Keyword: Test Gases

Search Result 398, Processing Time 0.029 seconds

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment (폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Kim, Kyeong-Min;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.

An Investigation on Surface Flashover Characteristics of FRP in Several Insulation Gases for the Spacer of Cryogenic Bushing

  • Hwang, Jae-Sang;Shin, Woo-Ju;Seong, Jae-Kyu;Lee, Jong-Geon;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.20-23
    • /
    • 2012
  • Superconducting equipment has been actively investigated for securing the environment and energy technology (ET) in various parts of the world. Despite these movements, a high voltage cryogenic bushing, which plays an important role of interconnection between the electric power systems and superconducting devices, has not been fully developed due to severe insulation requirements. A gas insulated cryogenic bushing has been investigated as one of our projects since 2010. As a basic step to obtain the design parameters for cryogenic bushing, we focused on the surface flashover characteristics of glass fiber reinforced plastic (FRP) in several insulation gases. For the surface flashover tests, several insulation gases including $SF_6$, $CF_4$ and $N_2$ gas were prepared. Various length of FRP specimens were fabricated in order to obtain the fundamental data for creepage distance of FRP. The first specimen group was from 2 mm to 10 mm with 2 mm intervals and the second specimen group was from 20 mm to 100 mm with 20 mm intervals. And the gas pressure was varied from 1 bar to 4 bar. An AC overvoltage test and a lightning impulse test were performed. Then the experimental results of surface flashover were obtained and analyzed. Based on these results, it would be possible to design the optimum creepage distance of FRP in a cryogenic bushing.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

Development of Gas Measurement System for the Harmful Gases at Livestock Barn (축산생육환경 유해가스 모니터링을 위한 무선가스측정시스템 개발)

  • Kim, Young Wung;Paik, Seung Hyun;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.314-321
    • /
    • 2012
  • Harmful gases which are generated from various rout at growth environment of livestock ban have a direct and indirect bad influence to the livestock and farmers, and also step-up breeding density and long-term exposure to the sealed environment of winter can be fatal. In this paper, we propose a gas measurement system for monitoring gases of ammonia, hydrogen sulfide, volatile organic compounds, etc. which arise from the muck. The measurement system consist of both wireless gas sensor node and gas recognition software using a Fuzzy Min-Max neural network. To evaluate the performance of suggested system, gas measurement experiments are performed in laboratory environment by using the designed wireless gas sensor node. And we show the performance through classification test for the target gases by the designed gas recognition software.

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF

A Comparative Study on Toxic Gas Index and Stop Time of Mouse Activity (연소독성지수와 마우스 행동정시시간 비교 연구)

  • Cho, Nam-Wook;Lee, Jong-Cheon;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.35-41
    • /
    • 2011
  • Casualties due to toxic smoke products have been reported as major fire damage. There are various tests in order to evaluate toxic smoke from a fire at home and abroad, and KS F 2271 as a test of the gas hazard of building finish materials has been conducted in Korea. The current test of the gas hazard exposes rodent, laboratory rat, to smoke gases to evaluate combustion gas toxicity by measuring acting time of that. this study performed a test of the gas hazard for combustible polymer material, Urethane and rubber flooring, and determined gases with the FT-IR. Quantitative results compared with standard value defined in BS6853 and toxicity index (R) was calculated. Using relative comparison with animal test and the toxicity index, We tried a variety of toxicity evaluation by correlation analysis of two tests.

Performance evaluation of TEDA impregnated activated carbon under long term operation simulated NPP operating condition

  • Lee, Hyun Chul;Lee, Doo Yong;Kim, Hak Soo;Kim, Cho Rong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2652-2659
    • /
    • 2020
  • The methyl iodide (CH3I) removal performance of tri-ethylene-di-amine impregnated activated carbon (TEDA-AC) used in the air cleaning unit of nuclear power plants (NPPs) should be maintained at least 99% between 24 month-performance test period. In order for evaluating the effectiveness of TEDA-AC on the removal performance of CH3I in nuclear power plant during the operation of NPPs, the long-term test for up to 15 months was carried out under the simulated operating conditions (e.g., 25 ℃, RH 50%, ppb level poisoning gases injection) at nuclear power plants (NPPs). The TEDA-AC samples were analyzed with the Brunauer-Emmett-Teller (BET) specific surface area and TEDA content as well as CH3I penetration test. It is clearly evident that more than 99% of CH3I removal performance of TEDA-AC was observed in the TEDA-AC samples during 15 months of long-term operation under the simulated NPP operating conditions including the ppb level of organic and oxide form of poisoning gases. BET specific surface area and TEDA content that can affect the CH3I removal performance of TEDA-AC were also maintained as those in new TEDA-AC during 15 months of long-term operation.

Evaluating GHG Emissions Reduced by Real-time Traffic Information in Gasoline Vehicle (실시간교통정보 이용에 따른 가솔린차량의 온실가스 저감효과 평가)

  • Kim, Jun-Hyung;Um, Jung-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.443-453
    • /
    • 2011
  • Real-time Traffic Information Service could play a key role in reducing incomplete combustion time remarkably since it can provide traffic information in real-time basis. Emission characteristics of test engines were studied in terms of travel distance and speed. The present study focused on a north district in Daegu, 12 km. The driving for the emission test was done at 8AM, 3PM, 7PM which represents various traffic conditions. The reduced emissions of Greenhouse Gases (GHG) have been measured for a travel distance running at different loads (conventional shortest route and Real-time Traffic Information) and GHG ($CO_2$, $CH_4$, $N_2O$) are all inventoried and calculated in terms of existing emission factors. The emission of GHG has been shown to reduce linearly with travel distance: $CO_2$ (9.15%), $CH_4$ (18.43%), $N_2O$(18.62%).