• Title/Summary/Keyword: Test Bench

Search Result 393, Processing Time 0.028 seconds

Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition (벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • In this study, an experiment on an air conditioning test bench was performed to verify the possibility of fuel economy simulation for the SC03 mode, North America fuel economy certification mode with a/c on condition, one of the vehicle fuel economy evaluation modes. The air conditioning test bench used in this study had each chamber simulating the actual vehicle air conditioning system and the controlling temperature, humidity, and air flow velocity to reproduce environmental conditions. Reliable results were obtained about the compressor RPM and inlet air velocity in front of the condenser corresponding to vehicle speed and air velocity in front of the vehicle, respectively, in the simulation of the SC03 mode, previously performed in CWT, in an air conditioning test bench. It was also discovered that there was a distinct difference in the fuel economy depending on the difference in the compressor displacement in the simulation test of the SC03 mode in the air conditioning test bench under various displacement conditions of the compressor.

Development of Bench Tester for Designing the Passive Anti-Rolling Tanks (수동형 감요수조 설계를 위한 벤치테스터 개발)

  • Lew, Jae-Moon;Kim, Hyochul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench (1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구)

  • Choi, Yun-sung;You, Young-jin;Jeong, Jin-seok;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.473-483
    • /
    • 2015
  • This paper reports the single-input-single-output cascade control by using 1-axis attitude control test-bench for quad-rotor UAV. The test-bench was designed as a see-saw shape using 2 motors and propellers, and to enable changing the center of gravity with the center of gyration using ballast. The experiment was carried out by constructing a PID-PID controller having a cascade structure with the test-bench. The SIMC based PID gain tuning process, which makes PID gain tuning easy, was grafted to cascade control. To graft SIMC method, the system parameter estimation result was conducted with second order time delay model by using Matlab-Simulink. Gain tuning was conducted by simulating with estimated system parameter. In this paper, the conventional application of SIMC was conducted and improved application was proposed for improving stability at tuning process.

The Evaluation of Fire Safety Performance on Interior Finish Materials (Gypsum Board, Plywood) (건물내장재(석고보드, 합판)의 화재성능평가)

  • 김충환;김종훈;김운형;하동명;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.55-62
    • /
    • 2001
  • The fire performance evaluation methods in Korea and overseas for interior finish materials were analysed and tested with gypsum board and Plywood by using room corner test not adopted by domestic code until now. The results of gypsum board (thickness:8 mm) and Plywood (thickness:4 mm) applying NFPA 265 and ISO 9705 test respectively are satisfied the assessment criteria. To assess a actual fire performance and classify fire hazard levels for interior finish materials, room-corner test and flame spread models should be adopted in building code and fire code to overcome limitations of current bench-scale test method.

  • PDF

Numerical and experimental study of multi-bench retained excavations

  • Zheng, Gang;Nie, Dongqing;Diao, Yu;Liu, Jie;Cheng, Xuesong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.715-742
    • /
    • 2017
  • Earth berms are often left in place to support retaining walls or piles in order to eliminate horizontal struts in excavations of soft soil areas. However, if the excavation depth is relatively large, an earth berm-supported retaining system may not be applicable and could be replaced by a multi-bench retaining system. However, studies on multi-bench retaining systems are limited. The goal of this investigation is to study the deformation characteristics, internal forces and interaction mechanisms of the retaining structures in a multi-bench retaining system and the failure modes of this retaining system. Therefore, a series of model tests of a two-bench retaining system was designed and conducted, and corresponding finite difference simulations were developed to back-analyze the model tests and for further analysis. The tests and numerical results show that the distance between the two rows of retaining piles (bench width) and their embedded lengths can significantly influence the relative movement between the piles; this relative movement determines the horizontal stress distribution in the soil between the two rows of piles (i.e., the bench zone) and thus determines the bending moments in the retaining piles. As the bench width increases, the deformations and bending moments in the retaining piles decrease, while the excavation stability increases. If the second retaining piles are longer than a certain length, they will experience a larger bending moment than the first retaining piles and become the primary retaining structure. In addition, for varying bench widths, the slip surface formation differs, and the failure modes of two-bench retained excavations can be divided into three types: integrated failure, interactive failure and disconnected failure.

Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing (부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험)

  • Je, Youngwan;Kim, Hansol;Kim, Lyu-Woon;Chung, Koo-Hyun;An, Joong-Hyok;Jeon, Hong-Gyu
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.

Bench Mark Test on Rapid Prototyping Processes and Machines for Functional Prototypes (기능성 시제품 생산용 쾌속조형공정의 성능비교시험)

  • Kim Gi-Dae;Sung Joo-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.187-195
    • /
    • 2006
  • FDM, SLS, and EOS processes are the layered manufacturing processes far functional prototypes. In this paper, bench mark tests of those processes were carried out using various materials. The test includes mechanical properties, such as tensile and compressive strengths, hardness, impact strength, and heat resistance, and surface roughness, shape and dimensional accuracy, manufacturing time, and manufacturing costs. It is verified that SLS method is advantageous in surface roughness and manufacturing time, EOS method in shape accuracy, and FDM method is great in manufacturing costs.