• Title/Summary/Keyword: Terzaghi's Earth Pressure

Search Result 7, Processing Time 0.022 seconds

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Lateral Earth Pressure against Gravity Walls Backfilled by $C-\phi$ Soil ($C-\phi$ 흙으로 뒤채움한 중력식 옹벽에 작용하는 정적토압)

  • Jeong, Seong-Gyo;Heo, Dae-Yeong;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-60
    • /
    • 1996
  • Of the classical theories on lateral earth pressure, the Coulomb's and the Rankine's theories, which have been usually used in practice for design of retaining walls, assumed that the lateral earth pressure was a triangular distribution. However, the experimental results obtained by Terzaghi(1934), Tsagreli(1967), Fang & Ishibashi(1986), etc showed that lateral pressure were not triangular distribution. ' In this study, for rigid walls with inclined backfaces and inclined surfaces backfilled by $C-\phi$ soils, an analytical method of earth pressure distribution has been newly suggested by using the concept of the flat arch. The results calculated by the newly suggested equations were compared with ones by the existed theories. And'the influence factors of the earth pressures by the suggested equations were investigated. As a result, the thrusts obtained by this method agree well with those by the existing theories, except the Rankine's solution. It was showed that the height to the centre of pressure(h) depends mainly upon the inclinations of the backface and the backfilled surface, the angle of internal friction, and the adhesion between the wall and the backfilled soil, instead of 0.33H, where H is the wall height.

  • PDF

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

Calculation and field measurement of earth pressure in shield tunnels under the action of composite foundation

  • Chi Zhang;Shi-ju Ma;Yuan-cheng Guo;Ming-yu Li;Babak Safaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Taking a subway shield tunnel in a certain section of Zhengzhou Metro Line 5 as an example, the field tests of shield cutting cement-soil monopile composite foundation were carried out. The load and internal force of the tunnel lining under the action of composite foundation were tested on-site and the distribution characteristics and variation laws of earth pressure around the tunnel under the load holding state of the composite foundation were analyzed. Five different load combinations (i.e., overburden load theory + q0, Terzaghi's theory + q0, Bierbaumer's theory + q0, Xie's theory + q0, and the proposed method (the combination of compound weight method and Terzaghi's theory) + q0) were used to calculate the internal force of the tunnel structure and the obtained results were compared with the measured internal force results. The action mode of earth pressure on the tunnel lining structure was evaluated. Research results show that the earth pressure obtained by the calculation method proposed in this paper was more consistent with the measured value and the deviation between the two was within 5%. The distribution of the calculated internal force of the tunnel structure was more in line with the distribution law of field test data and the deviation between the calculated and measured values was small. This effectively verified the rationality and applicability of the proposed calculation method. Research results provided references for the design and evaluation of shield tunnels under the action of composite foundations.

Determination of the coefficient of variation of parameters for the reliability design of shield tunnel segment lining (쉴드 터널 세그먼트 라이닝의 신뢰성 설계를 위한 변수의 변동계수 결정)

  • Byun, Yoseph;Kim, Do;Lee, Seongwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.875-885
    • /
    • 2019
  • This paper is aimed to suggest the coefficient of variation of the total load on the segment lining and the coefficient of variation of earth pressure in reliability based design of shield tunnel. For this purpose, the statistical characteristics of weathered soil and weathered rock were calculated by analyzing the site survey data of the domestic urban section. The coefficient of variation could be estimated by applying these values to Terzaghi's theory using MCS technique. As a result, the coefficient of variation of rock load for weathered soil and weathered rock was 0.08~0.14. The coefficient of variation for the total load acting on the tunnel was LC1 = 0.38, LC2 = 0.33, and LC3 = 0.37. The proposed coefficients of variation can be used in the reliability-based design of shield tunnel segments.