• Title/Summary/Keyword: Terrestrial LiDAR data

Search Result 72, Processing Time 0.023 seconds

Comparative Accuracy of Terrestrial LiDAR and Unmanned Aerial Vehicles for 3D Modeling of Cultural Properties (문화재 3차원 모델링을 위한 지상 LiDAR와 UAV 정확도 비교 연구)

  • Lee, Ho-Jin;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.179-190
    • /
    • 2017
  • A terrestrial LiDAR survey was conducted and unmanned aerial vehicle(UAV) images were taken for target cultural properties to present the utilization measures of terrestrial LiDAR and UAV in three-dimensional modeling of cultural properties for the identification of the status and restoration of cultural properties. Then the accuracy of the point clouds generated through this process was compared, an overlap analysis of the 3D model was conducted, and a convergence model was created. According to the results, the modeling with terrestrial LiDAR is more appropriate for precise survey because 3D modeling for the detection of displacement and deformation of cultural properties requires an accuracy of mm units. And UAV model has limitation as the impossibility of detailed expression of parts with sharp unevenness such as cracks of bricks. However, it is found that the UAV model has a wide range of modeling and has the advantage of modeling of real cultural properties. Finally, the convergence model created in this study using the advantages of the terrestrial LiDAR model and the UAV model could be efficiently utilized for the basic data development of cultural properties.

Experiment of Computation of Ground Cutting Volume Using Terrestrial LiDAR Data (지상 LiDAR 자료의 절토량 산정 실험)

  • Kim, Jong-Hwa;Pyeon, Mu-Wook;Kim, Sang-Kuk;Hwang, Yeon-Soo;Kang, Nam-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • Terrestrial LiDAR can measure high capacity 3D-topography coordinates and try to apply to various public works such as tunnel surveying, facility deformation surveying. This experiment is about how to calculate ground cutting volume because the stage of the earth work spend lots of money and time among civil engineering works. Surveying cutting area using Terrestrial LiDAR and then calculating cutting area in planned area comparing sectional plan before construction and planned section and LiDAR data. Also, the values of the calculating ground cutting volume by three different resolution LiDAR has are compared and analyzed.

  • PDF

Application of Terrestrial LiDAR to Monitor Unstable Blocks in Rock Slope (암반사면 위험블록 모니터링을 위한 지상 LiDAR의 활용)

  • Song, Young-Suk;Lee, Choon-Oh;Oh, Hyun-Joo;Pak, Jun-Hou
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.251-264
    • /
    • 2019
  • The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.

Noise Removal of Terrestrial LiDAR Data Using Tensor Voting Method (텐서보팅(Tensor Voting)기법을 이용한 지상라이다 자료의 노이즈 처리)

  • Seo, Il-Hong;Sohn, Hong-Gyoo;Kim, Chang-Jae;Lim, Jin-Hee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.157-160
    • /
    • 2010
  • Terrestrial LiDAR data contains outliers which do not need in processing purpose. That is inefficient in the aspect of productivity. These noise requires manual process to be removed, which causes inefficiency in aspect of productivity. The purpose of this research is to demonstrate a possibility of automatic outlier removal of LiDAR data using 3D Tensor Voting method. For this, we presented in this article about the procedure to perform the application of Tensor Voting algorithm to the real data from terrestrial LiDAR.

  • PDF

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Monitoring analysis of Model Slope by using Terrestrial LiDAR data (지상LiDAR자료를 이용한 모형사면의 모니터링)

  • Kim, Sung-Hak;Choi, Seung-Pil;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • A model slope was made to work out a way of detecting the sign of the occurrence of landslides and monitoring analysis was conducted to grasp the slope displacement of Terrestrial LiDAR equipment. As a result, the image of slope displacement could be monitored quickly and the accuracy of monitoring analysis was a deviation of 0.007m, 0.006m and 0.006m on average based on the figures prior to displacement after the first, second and third displacements, respectively. As the figures represent a very small deviation, they will be able to be used helpfully in measuring the displacement of actual slope in the future.

  • PDF

Slope Terrain Analysis According to Geographical Feature and Survey Place Based on Terrestrial LiDAR Data (지상라이다 자료를 이용한 지형특성 및 관측위치에 따른 사면지형분석)

  • Choi, Seung-Pil;Ham, Ju-Hyoung;Kim, Mun-Sup;Yang, In-Tae;Kim, Uk-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • In this study, subject areas with different topographic feature were selected for the purpose of measuring the slope terrain by setting Terrestrial LiDAR in different places. And the slope terrain was analyzed based on three-dimensional raw data obtained through the measurement of slope terrain. With DEM data obtained from five measurement instances with 5mm of scan interval by setting Terrestrial LiDAR on the site 30m away straight from the slope terrain consisting of asphalt, rock, soil, and plants, the slope terrain was analyzed according to topographic feature. In addition, in consideration of changes in setting location that might affect the measured result, this study reviewed the accuracy of measured data obtained from different measurement areas.

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Design and Implementation of System for Estimating Diameter at Breast Height and Tree Height using LiDAR point cloud data

  • Jong-Su, Yim;Dong-Hyeon, Kim;Chi-Ung, Ko;Dong-Geun, Kim;Hyung-Ju, Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • In this paper, we propose a system termed ForestLi that can accurately estimate the diameter at breast height (DBH) and tree height using LiDAR point cloud data. The ForestLi system processes LiDAR point cloud data through the following steps: downsampling, outlier removal, ground segmentation, ground height normalization, stem extraction, individual tree segmentation, and DBH and tree height measurement. A commercial system, such as LiDAR360, for processing LiDAR point cloud data requires the user to directly correct errors in lower vegetation and individual tree segmentation. In contrast, the ForestLi system can automatically remove LiDAR point cloud data that correspond to lower vegetation in order to improve the accuracy of estimating DBH and tree height. This enables the ForestLi system to reduce the total processing time as well as enhance the accuracy of accuracy of measuring DBH and tree height compared to the LiDAR360 system. We performed an empirical study to confirm that the ForestLi system outperforms the LiDAR360 system in terms of the total processing time and accuracy of measuring DBH and tree height.