• Title/Summary/Keyword: Terrestrial LiDAR

Search Result 106, Processing Time 0.08 seconds

A Study on the 3D Reconstruction and Historical Evidence of Recumbent Buddha Based on Fusion of UAS, CRP and Terrestrial LiDAR (UAS, CRP 및 지상 LiDAR 융합기반 와형석조여래불의 3차원 재현과 고증 연구)

  • Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.111-124
    • /
    • 2021
  • Recently, Interest in the restoration and 3D reconstruction of cultural properties due to the fire of Notre Dame Cathedral on April 15, 2019 has been focused once again after the 2008 Sungnyemun fire incident in South Korea. In particular, research to restore and reconstruct the actual measurement of cultural properties using LiDAR(Light Detection and ranging) and conventional surveying, which were previously used, using various 3D reconstruction technologies, is being actively conducted. This study acquires data using unmanned aerial imagery of UAV(Unmanned Aerial Vehicle), which has recently established itself as a core technology in the era of the 4th industrial revolution, and the existing CRP(Closed Range Photogrammetry) and terrestrial LiDAR scanning for the Recumbent Buddha of Unju Temple. Then, the 3D reconstruction was performed with three fusion models based on SfM(Structure-from-Motion), and the reproducibility and accuracy of the models were compared and analyzed. In addition, using the best fusion model among the three models, the relationship with the Polar Star(Polaris) was confirmed based on the real world coordinates of the Recumbent Buddha, which contains the astronomical history of Buddhism in the early 11th century Goryeo Dynasty. Through this study, not only the simple external 3D reconstruction of cultural properties, but also the method of reconstructing the historical evidence according to the type and shape of the cultural properties was sought by confirming the historical evidence of the cultural properties in terms of spatial information.

Improvement of Precision for Measuring Individual Trees using Aerial LiDAR and Terrestrial Laser Scanner (항공 LiDAR와 지상 Laser Scanner를 이용한 개체목 측정의 정확도 향상)

  • Jung, Seung-Eun;Lee, Woo-Kyun;Kawk, Doo-Ahn;Choi, Sung-Ho;Kwak, Han-Bin;Kim, So-Ra
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.246-248
    • /
    • 2009
  • 기존의 항공사진 및 위성사진을 활용한 원격탐사방법은 기상조건에 따른 제약과 3차원적 수직구조 관한 정보 수집에 한계가 있다. 따라서 보다 정확하고 신속한 산림자원 정보를 획득하기 위해서는 새로운 기술적 접근이 필요하다. 3차원 측정이 가능한 LiDAR의 특성을 이용하면 기존 방법의 부정확성과 비효율성을 상당부분 극복 할 수 있다. 본 연구에서는 지상 Laser Scanner 와 항공 LiDAR를 이용하여 개체목의 3차원 구조를 예측하여 수고, 지하고, 수관면적, 수관체적을 추정하고 결과를 비교하였다. 지상 Laser Scanner에 의한 측정치를 참조자료로 하여 항공 LiDAR의 개체목 측정 정확성을 향상 시킬 수 있는 보정식을 최종적으로 개발하였다.

  • PDF

3D Modelling of Steep Rock Face by Terrestrial Scanning LiDAR (지상 Scanning LiDAR에 의한 암사면의 3차원 모델링)

  • Lee, Yong-Chang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.93-96
    • /
    • 2007
  • LIDAR is a relatively new technological tool that can be used to accurately georeference terrain features, and also is becoming an important 3D mapping tool in GIS. In this study it is described the capabilities of terrestrial LIDAR that was used to build a 3D terrain model of extremely steep rock face, along with the useful data and examples of contributions terrestrial lidar has made to outcrop studies. For this, High-resolution terrestrial lidar acquisition, processing, interpretation are discussed and applied to mapping of geological surfaces in three dimensions. We expected that lidar is a tool with which we can improve our current field methods and quantify the observations geologists make.

  • PDF

Simulation of the Debris Flow Diffusion in the Mountainous Watershed Using 3D Terrain Data (3D 지형데이터를 활용한 산지유역 토석류 흐름 모의에 관한 연구)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • This study selected the national park area of Mt. Seorak in Inje-gun, Gangwon-do, where a lot of debris flow occurred due to the heavy rainfall and conducted a field survey. In addition, topographic spatial data were constructed using the GIS technique to analyze watershed characteristics. For the construction of terrain data after the disaster, the debris flow occurrence section was scanned and the 3D topographic data was constructed using the terrestrial LiDAR. LiDAR terrain data are compared to digital maps(before disaster) to assess precision and topographic data before and after the disaster were compared and analyzed. Debris flow diffusion area was calculated using FLO-2D model and compared debris flow occurred section.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

Analysis of Random Properties for JRC using Terrestrial LiDAR (지상라이다를 이용한 암반사면 불연속면거칠기에 대한 확률특성 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Joint roughness is one of the most important parameters in analysis of rock slope stability. Especially in probabilistic analysis, the random properties of joint roughness influence the probability of slope failure. Therefore, a large dataset on joint roughness is required for the probabilistic analysis but the traditional direct measurement of roughness in the field has some limitations. Terrestrial LiDAR has advantagess over traditional direct measurement in terms of cost and time. JRC (Joint Roughness Coefficient) was calculated from statistical parameters which are known from quantitative methods of converting the roughness of the material surface into JRC. The mean, standard deviation and distribution function of JRC were obtained, and we found that LiDAR is useful in obtaining large dataset for random variables.

Displacement Measuring Method using Terrestrial LiDAR for Safety and Serviceability Monitoring of Steel Beams (지상 LiDAR를 이용한 철골보의 안전 및 사용성 모니터링을 위한 변위 계측기법)

  • Lee Hong-Min;Park Hyo-Seon;Lee Im-Pyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.190-197
    • /
    • 2005
  • To monitor the safety and serviceability of a structures, structural responses including displacements due to various design and unexpected loadings must be measured. The maximum displacement and its distributions of a structure can be used as a direct assessment index on its stiffness. For this reason, there have been diversely studied on measuring of the maximum displacement of a structure. However, there is no practical method for measuring displacement of a structure. Therefore, in this paper, new displacement measuring method is developed and accuracy of LiDAR is examined in detail for development of a new method for measuring displacement of a structure.

  • PDF

Error Analysis of Terrestrial LiDAR According to the Measurement Angle (지상 LiDAR 측정 각도에 따른 오차분석)

  • Kim, Jong-Suk;Sohn, Hong-Gyoo;Kim, Seong-Sam;Cho, Hyung-Sig;Jeong, Seong-Su
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.324-328
    • /
    • 2008
  • 지상 LiDAR(Light Detection And Ranging)는 정밀하고 빠르게 물체의 3차원 형상을 측량할 수 있는 시스템이다. 기본적으로 종전의 레이저 측량기의 기능을 갖고 있으며, 초당 최대 $5,000{\sim}50,000$ point의 레이저를 대상체 표면에 발사하여 대상체면에 투사한 레이저의 간섭이나 반사를 이용하여 대상체면상의 point could의 공간정보를 취득하는 관측방식의 3차원 정밀 측량으로서 대상체의 표면으로부터 상대적인 3차원(X, Y, Z) 지형공간좌표를 각각의 Point 데이터로 기록한다. 이러한 측정방법은 레이저가 반사되어 돌아오는 시간을 계산하여 거리를 결정하고 ${\theta}_h$(수평각)과 ${\theta}_v$(수직각) 각도만큼 수평, 수직으로 회전하여 측정한 점의 위치를 결정하므로 데이터 취득 각도에 따른 오차가 발생하게 된다. 본 연구 에서는 지상LiDAR 데이터 취득각도에 따른 오차 시뮬레이션 실시하여 실제 실험과의 비교 및 입사각에 따른 정확도 분석을 실시하였다.

  • PDF

Analysis of Shoreline Changes of Gagokcjon River Estuary Using Terrestrial LiDAR (지상 LiDAR를 이용한 가곡천 하구부 해안선변화 분석)

  • Tak, WonJun;Jun, KyeWon;Lee, HoJin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.327-327
    • /
    • 2017
  • 최근 지구 온난화에 따른 기후변화로 인한 해수면 상승과 폭풍해일의 강도 및 발생빈도가 증가하고 고파랑 내습, 난개발 등으로 인한 연안 지역의 해안선 변화 및 연안 침식이 크게 문제화되고 있다. 연안 환경의 변화를 분석하는 방법에는 광파측거기를 이용한 해빈 측량, RTK-GPS를 이용한 측정, 항공사진 분석 등이 주된 연구 방법이지만 이러한 연구 방법으로는 미세한 지형 변화의 관찰은 어려움이 많았으며 세밀하고 정량적인 지형분석이 요구 되었다. 본 연구에서는 연구대상지역인 가곡천 하구부를 대상으로 지상 LiDAR를 이용해 장기간 정밀측량을 실시하였다. 자료를 바탕으로 가곡천 하구부의 부피와 면적을 비교분석하였으며, 해안선변화의 정량적 비교분석을 실시하였다.

  • PDF

Roughness Analysis of Paved Road using Drone LiDAR and Images (드론 라이다와 영상에 의한 포장 노면의 평탄성 분석)

  • Jung, Kap Yong;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The roughness of the road is an important factor directly connected to the ride comfort, and is an evaluation item for functional evaluation and pavement quality management of the road. In this study, data on the road surface were acquired using the latest 3D geospatial information construction technology of ground LiDAR, drone photogrammetry, and drone LiDAR, and the accuracy and roughness of each method were analyzed. As a result of the accuracy evaluation, the average accuracy of terrestrial LiDAR were 0.039m, 0.042m, 0.039m RMSE in X, Y, Z direction, and drone photogrammetry and drone LiDAR represent 0.072~0.076m, 0.060~0.068m RMSE, respectively. In addition, for the roughness analysis, the longitudinal and lateral slopes of the target section were extracted from the 3D geospatial information constructed by each method, and the design values were compared. As a result of roughness analysis, the ground LiDAR showed the same slope as the design value, and the drone photogrammetry and drone LiDAR showed a slight difference from the design value. Research is needed to improve the accuracy of drone photogrammetry and drone LiDAR in measurement fields such as road roughness analysis. If the usability through improved accuracy can be presented in the future, the time required for acquisition can be greatly reduced by utilizing drone photogrammetry and drone LiDAR, so it will be possible to improve related work efficiency.