• Title/Summary/Keyword: Terrestrial LiDAR

Search Result 106, Processing Time 0.025 seconds

Short-term Change in Channel Morphology of the Naeseong Stream before the Operation of Yeongju Dam, Korea (영주댐 운영 전 내성천에서 하도 형태의 단기 변화)

  • Lee, Chanjoo;Kim, Donggu
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.12-23
    • /
    • 2017
  • The Naeseong Stream is a meandering sand-bed stream flowing through mountains and has so long maintained its geomorphological uniqueness characterized by extensive braided bare bars. Recently, its long-lasting landscape has been changed due to encroachment of vegetation. In this study being a part of long-term monitoring research morphological changes of the 56.8 km long study reach of the Naeseong Stream, which occurred during the period of 2012 - 2016 were analyzed. Airborne LiDAR and terrestrial cross-section surveys were carried out. Hydrological and on-site investigation data were also collected. Among the main four sites, two bend reaches showed point bars enlarged, while along the other two straight reaches mid-channel bars were either newly formed or increased in area and height. At the highest deposition point of each bar, vertical changes which were caused by one or two times of sediment deposition amounted to 0.6 - 1.4 m. On the contrary channel bed degradation was not obvious. Overall morphological changes in the study reach were attributed to deposition of sediment which occurred during the flood in July 2016 on the bar surfaces vegetated during the precedent dry seasons. These kind of geomorphological processes are thought to be the same as those related to the existing mid-channel islands along the mid- and downstream reach of the Naeseong Stream.

Maintenance of Hazardous Steep Slopes on National Park Trails (국립공원 탐방로 내 위험 급경사지 유지관리 방안 연구)

  • Kim, Hong Gyun;Kim, Tae Ho;Kim, Jae Hak;Kwak, Jae Hwan;Park, Sung Wook;Choi, Soo Won;Song, Young Karb
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.129-142
    • /
    • 2016
  • National parks, which are located mainly in mountainous areas, are always at risk of damage by landslides. The goal of this study is to establish a method for systematically maintaining hazardous steep slopes along trails in national parks. We produced a checklist suitable for each of the 19 national parks nationwide and investigated 183 slopes. The aim of these investigations is to recommend appropriate slope-stability countermeasures, including field investigations and stability analysis. We made preliminary investigations at specific sites, evaluating the slope hazard using specialized equipment such as terrestrial LiDAR. An investment priority formula was developed, and ranking and hazardous grades were calculated as part of a long-term maintenance plan. Finally, to systematically manage dangerous slopes and to house all the field data within one system, we developed the "Slope Maintenance System in National Parks" based on web server that can show various information for slopes.

Enhancing Query Efficiency for Huge 3D Point Clouds Based on Isometric Spatial Partitioning and Independent Octree Generation (등축형 공간 분할과 독립적 옥트리 생성을 통한 대용량 3차원 포인트 클라우드의 탐색 효율 향상)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • This study aims at enhancing the performance of file-referring octree, suggested by Han(2014), for efficiently querying huge 3D point clouds, acquired by the 3D terrestrial laser scanning. Han's method(2014) has revealed a problem of heavy declining in query speed, when if it was applied on a very long tunnel, which is the lengthy and narrow shaped anisometric structure. Hereupon, the shape of octree has been analyzed of its influence on the query efficiency with the testing method of generating an independent octree in each isometric subdivision of 3D object boundary. This method tested query speed and main memory usage against the conventional single octree method by capturing about 300 million points in a very long tunnel. Finally, the testing method resulted in which twice faster query speed is taking similar size of memory. It is also approved that the conclusive factor influencing the query speed is the destination level, but the query speed can still increase with more proximity to isometric bounding shape of octree. While an excessive unbalance of octree shape along each axis can heavily degrade the query speed, the improvement of octree shape can be more effectively enhancing the query speed than increasement of destination level.

Experiment LOS Analysis of 3D Point Spatial Data (3차원 포인트 공간자료 가시선 분석 실험)

  • Park, Jae-Sun;Eo, Yang-Dam;Yeon, Sang-Ho;Moon, Jae-Heum;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • Using 3D point data implemented from terrestrial LiDAR, this research has modelled geospatial data in 2 categories(gridded & un-gridded) and conducted LOS analysis experiment using outcome from the modeling exercise. To compare LOS analysis results from each of the 2 models in the above, maximum LOS (line of sight) range in the experimental area was specified as 30m in Area A, 40m in Area B and 50m in Area C and the time taken by LOS analysis and the number of visible points were measured. As for the LOS analysis experiment results, in comparison with the gridded model, the un-gridded model took about 3.9 times more time in Area A, 5.4 times in Area B and 6.5 times in Area C. In addition, about 0.97 times fewer points were measured in Area A, 0.93 times in Area B and 0.94 times in Area C. The difference between gridded model and un-gridded model in terms of the time taken by LOS analysis increased, as the maximum LOS range extended. On the other hand, the number visible points did not vary significantly in reference to the size of visible range.

Automatic Extraction of River Levee Slope Using MMS Point Cloud Data (MMS 포인트 클라우드를 활용한 하천제방 경사도 자동 추출에 관한 연구)

  • Kim, Cheolhwan;Lee, Jisang;Choi, Wonjun;Kim, Wondae;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1425-1434
    • /
    • 2021
  • Continuous and periodic data acquisition must be preceded to maintain and manage the river facilities effectively. Adapting the existing general facilities methods, which include river surveying methods such as terrestrial laser scanners, total stations, and Global Navigation Satellite System (GNSS), has limitation in terms of its costs, manpower, and times to acquire spatial information since the river facilities are distributed across the wide and long area. On the other hand, the Mobile Mapping System (MMS) has comparative advantage in acquiring the data of river facilities since it constructs three-dimensional spatial information while moving. By using the MMS, 184,646,009 points could be attained for Anyang stream with a length of 4 kilometers only in 20 minutes. Levee points were divided at intervals of 10 meters so that about 378 levee cross sections were generated. In addition, the waterside maximum and average slope could be automatically calculated by separating slope plane form levee point cloud, and the accuracy of RMSE was confirmed by comparing with manually calculated slope. The reference slope was calculated manually by plotting point cloud of levee slope plane and selecting two points that use location information when calculating the slope. Also, as a result of comparing the water side slope with slope standard in basic river plan for Anyang stream, it is confirmed that inspecting the river facilities with the MMS point cloud is highly recommended than the existing river survey.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.