• Title/Summary/Keyword: Terrain Factors

Search Result 200, Processing Time 0.031 seconds

Flood vulnerability analysis in Seoul, Korea (한국 도심지에서의 홍수취약성 분석)

  • Hwang, Nanhee;Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.729-742
    • /
    • 2019
  • Natural disasters such as floods has been increased in many parts of the world, also Korea is no exception. The biggest part of natural damage in South Korea was caused by the flooding during the rainy season in every summer. The existing flood vulnerability analysis cannot explain the reality because of the repeated changes in topography. Therefore, it is necessary to calculate a new flood vulnerability index in accordance with the changed terrain and socio-economic environment. The priority of the investment for the flood prevention and mitigation has to be determined using the new flood vulnerability index. Total 25 urban districts in Seoul were selected as the study area. Flood vulnerability factors were developed using Pressure-State-Response (PSR) structures. The Pressure Index (PI) includes nine factors such as population density and number of vehicles, and so on. Four factors such as damage of public facilities, etc. for the Status Index (SI) were selected. Finally, seven factors for Response Index (RI) were selected such as the number of evacuation facilities and financial independence, etc. The weights of factors were calculated using AHP method and Fuzzy AHP to implement the uncertainties in the decision making process. As a result, PI and RI were changed, but the ranks in PI and RI were not be changed significantly. However, SI were changed significanlty in terms of the weight method. Flood vulnerability index using Fuzzy AHP shows less vulnerability index in Southern part of Han river. This would be the reason that cost of flood mitigation, number of government workers and Financial self-reliance are high.

Model on the Relationship between the Radius of Curvature and Central Angle -the Case of Divided-roads in Flat Traditional Villages- (평지 전통마을 갈림길의 중심각과 곡률반경에 관한 연구)

  • 김윤하;안계복
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.10-16
    • /
    • 2000
  • The purpose of this study is to identify relationships between a central angle and a radius of curvature of divided roads in flat terrain of traditional villages, suggesting layout criteria for traditional villages: Nak-an, Sung-Eup, Ha-Whe. This study is sought to find the optimum model through the various SAS regression analyses. a regression analysis of this data was adopted to induce the relationship formula between a central angle of curve and a radius of curvature. Results of this study are as follows: 1) Most of the divided roads in traditional villages have a complex curve rather than a simple curve. 2) A central angle of curve has ranged from 11$^{\circ}$to 127$^{\circ}$, with a mean degree of 63.9. 3) In the lower level of central angle(11-40$^{\circ}$), the branch roads have distributed with a high frequency, but with a low frequency in the higher level of central angle(90-140$^{\circ}$). 4) A radius of curvature in the divided roads has ranged from 0.9m to 59.6, but half of the roads have concentrated on 1-6m of the curvature. 5) Compared to the result of hilly villages in previous study(Ahn, 1999), value of central angels in flat villages is lower than that of hilly villages, while a mean value of the curvature is higher than that of hilly villages. 6) A Non-linear regression analysis, resulting from the SAS application, was useful method to induce a relationship formula between a central angle and a radius of curvature in the branch roads. Our study's formula is as follow: R=100.3*EXP(-0.06*$\delta$)+3.91. 7) Our study model has less error than that of the Kishizuka's method, being applicable to a broader range of the branch roads. 8) A minimum radius of curvature in our study has showed 3.9m, suggesting to reconsider applications of the Kishizuka's(5.8m) in the footpass design, In the study for this presupposition model the efficiency and utility of it can be estimated to grow large according to how much and how far it includes both extremes of data. This study is for the application to a design in future through the numerical formula of divided roads of various traditional villages. The studies from now on will be about the quasi-hilly quasi-hilly village and hilly village supplementing these factors more.

  • PDF

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Analysis of Tree-rings for Inference of Periods in which Slow-moving Landslides Occur (나이테 분석을 통한 땅밀림 발생 시기 추정)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.62-71
    • /
    • 2020
  • With the aim of restoring slow-moving landslide areas, this study collected fundamental data from tree-ring analysis of curved trees in these areas. We collected both upper and lower stem disks to measure the azimuth angles of six trees with growth curvature caused by tension cracks. Additionally, we analyzed various factors in the slow moving landslide area. The geological strata and main constitutive rocks in the study area were anorthosite-formed in the Precambrian period; moreover, there were no intrusive rocks, other geological strata, geological folds, or faults. The talus with weathered rocks was distributed in the upper zone of the slow-moving landslide area. According to annual-ring analysis of curved trees and terrain analysis by satellite imagery, slow-moving landslide occurred from the top to the bottom end of the slope between 1999 and 2011. There was a significant relationship (P < 0.01) between the azimuth angle of cracks caused by the slow-moving landslide and the angle of the curved trees. These results suggest that the occurrence of slow-moving landslides could be confirmed through analysis of annual-rings of curved trees, underground water levels, and terrain (by satellite imagery).

Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram (세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지) 관측지 지면모수의 공간 비균질성 정량화)

  • Moon, Sang-Ki;Ryu, Young-Ryel;Lee, Dong-Ho;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

A Study on the Effect of Collector Well on the Landcreep Slope (땅밀림 비탈면내 집수정 설치 효과 연구)

  • Jeon, Byeong Chu;Lee, Su Gon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.123-136
    • /
    • 2019
  • This study examines the effect of collector well installed to reduce groundwater level in the regions with the occurrence of landcreep, a soil mass movement triggered by instability on slopes. Slopes are prone to failure as a result of instability caused by its internal, topographic and geological properties as well as due to external factors such as rainfall and earthquake. In Korea during the rain season, rainfall infiltration affects the groundwater level in soil, building up porewater pressure and load, and finally drives slopes to collapse. Slope failure caused by rainfall infiltration has been leading to a drastic forest degradation. The studied slope is located adjacent to a valley, its terrain corresponds to piedmont gentle slope, while the upper part of the failure surface is steep. After reinforcing the terrain where landcreep had occurred and installing collector well on the slope, we measured the changes in the groundwater level. In order to analyze the relationship between the well and the slope, we calculated the ratio of groundwater level to rainfall before and after the installation of the collector well. As a result, it is confirmed that the ratio increases after the installation of the well, which in turn reduces the groundwater level. Analysis of the change in groundwater level after 3, 7, 15 days antecedent rainfall showed that the higher the overall groundwater level, the less the value ($r_p$) of groundwater level-rainfall ratio is, while the value becomes relatively greater when the groundwater level is low. In particular, if a slope has a large catchment basin as is in the case of the studied site, antecedent rainfall affects groundwater level in the order of 3 < 7 < 15 days.

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (II) - Focusing on AERMOD Model Application Method - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(II) - AERMOD 모델 적용방법을 중심으로 -)

  • Suhyang Kim;Sunhwan Park;Hyunsoo Joo;Minseop So;Naehyun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.4
    • /
    • pp.203-213
    • /
    • 2023
  • The AERMOD model was the most used, accounting for 89.0%, based on the analysis of the environmental impact assessment reports published in the Environmental Impact Assessment Information Support System (EIASS) between 2021 and 2022. The mismatch of versions between AERMET and AERMOD was found to be 25.3%. There was the operational time discrepancy of 50.6% from industrial complexes, urban development projects between used in the model and applied in estimating pollutant emissions. The results of applying various versions of the AERMET and AERMOD models to both area sources and point sources in both simple and complex terrain in the Gunsan area showed similar values after AERMOD version 12 (15181). Emissions are assessed as 24-hour operation, and the predicted concentration in both simple and complex terrain when using the variable emission coefficient option that applies an 8-hour daytime operation in the model is lowered by 37.42% ~ 74.27% for area sources and by 32.06% ~ 54.45% for point sources. Therefore, to prevent the error in using the variable emission coefficient, it is required to clearly present the emission calculation process and provide a detailed explanation of the composition of modeling input data in the environmental impact assessment reports. Also, thorough reviews by special institutions are essential.

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.

Development Environment for Open-pit Mine Monitoring System using Geospatial Open Platform and Open Source Software (공간정보오픈플랫폼 및 오픈 소스 기반의 노천광산 모니터링시스템 개발을 위한 환경 조성)

  • Lee, Hyun Jik;Kim, Se Yul;You, Ji Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.165-173
    • /
    • 2014
  • Open-pit mining method, is safe relatively work as compared with underground mining. And high yield, low production cost, has the advantage that it can provide a lot of production. But deforestation, tailings and slag deposition, mineral debris, dust, water, noise, land subsidence, sediment runoff discharge, I have internalized environmental disaster predisposing factors, such as landslides. Thus, it may be noted, also by typical environmental regulations. We try to deal with the changes in open pit terrain and environment related issues. Then, use the recovery period and the open pit mine and ecology off the gun, environment-friendly development of accurate monitoring methods, systems of this development is required. The use of open platforms and open source GIS tools have been developed during this period, it needs to develop spatial information environment monitoring system open pit mine construction.