• Title/Summary/Keyword: Terrain Analysis

Search Result 774, Processing Time 0.021 seconds

Analysis of Terrain by LIDAR Data (LiDAR 자료에 의한 지형해석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;We, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.389-397
    • /
    • 2006
  • The purpose of the present paper is to offer an analysis of LiDAR data processing and three dimensional terrain for Geographic Information System (CIS) applications. Generally, LiDAR survey is the method which obtains quantitative and qualitative information of the terrain using airborne laser scanning (ALS). We will get a most topographic data at a Triangular Irregular Network (TIN), Digital Surface Model (DSM) and Digital Elevation Model (DEM) using LiDAR data. We examined many factors such as visibility, hillshade, aspect and slope using DEM and DSM. The analyzing results obtained from each item are thought to be regarded as leading factors in the terrain analysis. It is to be hoped that LiDAR survey will contribute a new approach to the terrain analysis.

Application of Satellite Image Using RFM (다항식비례모형을 이용한 위성영상의 활용에 관한 연구)

  • Sohn, Hong-Gyoo;Yoo, Hyung-Uk;Park, Choung-Hwan
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.73-80
    • /
    • 2002
  • RFM is believed to be universally applicable to any type of the sensor. Most of researches carried out lately are concentrated on terrain-independent method, but the researches about approvement of accuracy by way of terrain-dependent method are required to increase a practical use of satellite imagery in nonprofessional groups. This research focused on a means to improve RFM solution, a matching technique, and a generation of DEM through a correlation analysis, with terrain-dependent solution. The result shows that accuracy problem which is caused by over-parameterization on RFCs was removed through correlation analysis, and it was possible to generate a accurate DEM with terrain-dependent solution. And also, the application of RFM with different satellite images show sensor independent characteristics of RFM

  • PDF

Analysis of Real Time Precise 3-Dimensional Terrain of Reservoir Using Echo Sounder and RTK-GPS (Echo Sounder와 RTK-GPS를 이용한 실시간 정밀 3차원 저수지 지형분석)

  • 장용구;박종열;문두열;강인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.467-470
    • /
    • 2003
  • This study tries to introduce the precision measurement of 3-dimensional terrain of reservoir using Echo Sounder and RTK-GPS which is unprecedented in domestic. In this study, to introduce the way to produce the plane figure, the cross section and data of underside reservoir by constructing the 3-dimensional terrain models using 3-Dimensional data gained by measurement.

  • PDF

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

Search for Ground Moving Targets Using Dynamic Probability Maps (동적 확률지도를 이용한 지상 이동표적 탐색)

  • Kim, Eun-Kyu;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • In order to achieve success in ground operations, searching for moving targets is one of critical factors. Usually, the system of searching for adversary ground moving targets has complex properties which includes target's moving characteristics, camouflage level, terrain, weather, available search time window, distance between target and searcher, moving speed, target's tactics, etc. The purpose of this paper is to present a practical quantitative method for effectively searching for infiltrated moving targets considering aforementioned complex properties. Based upon search theories, this paper consists of two parts. One is infiltration route analysis, through terrain and mobility analysis. The other is building dynamic probability maps through Monte Carlo simulation to determine the prioritized searching area for moving targets. This study primarily considers ground moving targets' moving pattern. These move by foot and because terrain has a great effect on the target's movement, they generally travel along a constrained path. With the ideas based on the terrain's effect, this study deliberately performed terrain and mobility analysis and built a constrained path. In addition, dynamic probability maps taking terrain condition and a target's moving speed into consideration is proposed. This analysis is considerably distinct from other existing studies using supposed transition probability for searching moving targets. A case study is performed to validate the effectiveness and usefulness of our methodology. Also, this study suggests that the proposed approach can be used for searching for infiltrated ground moving target within critical time window. The proposed method could be used not only to assist a searcher's mission planning, but also to support the tactical commander's timely decision making ability and ensure the operations' success.

Application of the EIASS for Assessing Changes in Terrain Features in Development Initiatives: A Case Study in South Korea (환경영향평가정보지원시스템(EIASS)을 활용한 국내 주요 개발사업의 지형변화 검토)

  • Sujung Heo;Dong Kun Lee;Eunsub Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.407-418
    • /
    • 2023
  • This study conducted an analysis of terrain change indicators in major development projects in Korea, examining the correlation between terrain change indicators to derive foundational terrain change metrics based on different land use and slope types. The aim is to contribute to sustainable development by enhancing the efficiency of land utilization and landscaping, while minimizing environmental impacts in future development endeavors. Additionally, to apply the research findings in practical contexts, domestic regulations related to terrain were surveyed, and the compatibility and usability between these regulations and research analysis results were discussed. Based on this, the study seeks to explore strategies for more accurate and useful utilization of terrain change indicators in future research. As a result, in the tourism development, terrain changes predominantly occur in the order of flat land, hillly land, and mountain land, with the analysis indicating higher terrain changes in undulating hilly and mountainous lands compared to flat land. Furthermore, in industrial complex development, very steep (20°-30°) and extreme (30°-40°) slopes; in urban development projects, steep slope (15°-20°); in athletic service facility and tourist development, steep (15°-20°) and very steep (20°-30°) exhibit higher average terrain change indicators compared to other slope categories. The findings of our study can contribute to the formulation of strategies aimed at minimizing terrain disturbance in future domestic development projects and serve as foundational data for environmental impact assessments.

A Study on the Analysis of the Current Situation of the Target Site Using the Image of Unmanned Aircraft in the Environmental Impact Assessment

  • Ki-Sun Song;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Small-scale environmental impact assessments have limitations in terms of survey duration and evaluation resources, which can hinder the assessment and analysis of the current situation. In this study, we propose the use of drone technology during the environmental impact assessment process to supplement these limitations in the current situation analysis. Drone photography can provide rapid and accurate high-resolution images, allowing for the collection of various information about the target area. This information can include different types of data such as terrain, vegetation, landscape, and real-time 3D spatial information, which can be collected and processed using GIS software to understand and analyze the environmental conditions. In this study, we confirmed that terrain and vegetation analysis and prediction of the target area using drone photography and GIS analysis software is possible, providing useful information for environmental impact assessments.

Parameter Analysis Method for Terrain Classification of the Legged Robots (보행로봇의 노면 분류를 위한 파라미터 분석 방법)

  • Ko, Kwang-Jin;Kim, Ki-Sung;Kim, Wan-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Terrain recognition ability is crucial to the performance of legged robots in an outdoor environment. For instance, a robot will not easily walk and it will tumble or deviate from its path if there is no information on whether the walking surface is flat, rugged, tough, and slippery. In this study, the ground surface recognition ability of robots is discussed, and to enable walking robots to recognize the surface state and changes, a central moment method was used. The values of the sensor signals (load cell) of robots while walking were detected in the supported section and were analyzed according to signal variance, skewness, and kurtosis. Based on the results of such analysis, the surface state was detected and classified.

GPS Gravity Surveying for the Terrain Analysis at the Choogaryeong Rift Valley between Seoul and Cheolwon (서울-철원간 추가령곡의 지형분석을 위한 GPS 중력측정)

  • 이창호
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • This study presents the gravity data with GPS survrying and the geophysical profiles at the Choogaryeong Rift Valley. And in determing geoid by GPS measurement, survey control points (SCP) whoch built by the Republic of Korean Army are used. Seventy nine SCP and the two triangulation stations are reviewd by GPS. Digital terain model is under for terrain analysis. The analyses of the gravity surveying with GPS are as follows. The low values of the negative Bouguer anomalies represent the high elevation terrain. The Bouguer anomalies show the decrrasing trend toward the eastern part of the study area. Characteristics of free-air anomalies are related with terrain elevation. The regional gravity anomalies decreas toward the eastern part of the study area. The trends of variations are associated with the thermotectonic and geologic structure beneath the Choogaryeong Rift Valley. The most parts of the study area represent negative residual gravity anomalies due to the low dencity of sedimentary cover in the Rift Valley. There are three valleys and four mountains in the direction of NE-SW or NNE-SSW which are structured by the geological features.

  • PDF