• Title/Summary/Keyword: Terra

Search Result 294, Processing Time 0.025 seconds

Persistent Scatterer Selection and Network Analysis for X-band PSInSAR (X-band PSInSAR를 위한 고정산란체 추출 및 네트워크 분석 기법)

  • Kim, Sang-Wan;Cho, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.521-534
    • /
    • 2011
  • The high-resolution X-band SAR systems such as COSMO-SkyMED and TerraSAR-X have been launched recently. In addition KOMPSAT-5 will be launched in the early of 2012. In this study we developed the new method for persistent scatterer candidate (PSC) selection and network construction, which is more suitable for PSInSAR analysis using multi-temporal X-band SAR data. PSC selection consists in two main steps: first, selection of initial PSCs based on amplitude dispersion index, mean amplitude, mean coherence. second, selection of final PSCs based on temporal coherence directly estimated from network analysis of initial PSCs. To increase the stability of network the Multi- TIN and complex network for non-urban area were addressed as well. The proposed algorithm was applied to twenty-one TerraSAR-X SAR of New Orleans. As a result many PSs were successfully extracted even in non-urban area. This research can be used as the practical application of KOMPSAT-5 for surface displacement monitoring using X-band PSInSAR.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

Baekdu Volcano Lake "Chun-ji" Ice Dynamic Monitoring Using TerraSAR-X Satellite Imagery (TerraSAR-X 위성영상을 활용한 백두산 천지 얼음 면적 변화 모니터링)

  • Park, Sung-Jae;Lee, Seulki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.327-336
    • /
    • 2019
  • The caldera lake "Chun-ji" is located at the summit of Baekdu volcano, which is in the border of China and North Korea. Chun-ji Lake has altitude 2,189 m above sea level. The Chun-ji is freezing in the winter when the water temperature goes down to zero for a year, and it melts in the season when the water temperature goes up again. However,since it is located at a high altitude, there are many cloudy days, and it is difficult to observe with optical images. For this reason, radar images, which are less influenced by weather than optical images, are more effective for observing the ice of heaven and earth. In this study, 75 TerraSAR-X images from chun-ji area were used for analysis from 2015 to 2017, and the calculated ice area and temperature changes were analyzed. As a result, the ice of the caldera lake formed was formed in early December and slowly melted until mid-April. During this period, temperatures in the Samjiyeon area were about $-10^{\circ}C$ when ice was produced, and the temperature was about $0^{\circ}C$ in mid-April when it was thawing. Correlation coefficients between ice surface area and temperature in winter 2015 and 2016, where global ice is produced,show a high correlation of -0.82 and -0.75. In addition to the results of this study, it can be used as an indicator to monitor the volcanic activity by comparing the result of the recent volcanic activity with the result of the increase in water temperature using various imagery.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Analysis of Development Characteristics of the Terra Nova Bay Polynya in East Antarctica by Using SAR and Optical Images (SAR와 광학 영상을 이용한 동남극 Terra Nova Bay 폴리냐의 발달 특성 분석)

  • Kim, Jinyeong;Kim, Sanghee;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1245-1255
    • /
    • 2022
  • Terra Nova Bay polynya (TNBP) is a representative coastal polynya in East Antarctica, which is formed by strong katabatic winds. As the TNBP is one of the major sea ice factory in East Antarctica and has a great impact on regional ocean circulation and surrounding marine ecosystem, it is very important to analyze its area change and development characteristics. In this study, we detected the TNBP from synthetic aperture radar (SAR) and optical images obtained from April 2007 to April 2022 by visually analyzing the stripes caused by the Langmuir circulation effect and the boundary between the polynya and surrounding sea ice. Then, we analyzed the area change and development characteristics of the TNBP. The TNBP occurred frequently but in a small size during the Antarctic winter (April-July) when strong katabatic winds blow, whereas it developed in a large size in March and November when sea ice thickness is thin. The 12-hour mean wind speed before the satellite observations showed a correlation coefficient of 0.577 with the TNBP area. This represents that wind has a significant effect on the formation of TNBP, and that other environmental factors might also affect its development process. The direction of TNBP expansion was predominantly determined by the wind direction and was partially influenced by the local ocean current. The results of this study suggest that the influences of environmental factors related to wind, sea ice, ocean, and atmosphere should be analyzed in combination to identify the development characteristics of TNBP.

Flood Mapping Using Modified U-NET from TerraSAR-X Images (TerraSAR-X 영상으로부터 Modified U-NET을 이용한 홍수 매핑)

  • Yu, Jin-Woo;Yoon, Young-Woong;Lee, Eu-Ru;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1709-1722
    • /
    • 2022
  • The rise in temperature induced by global warming caused in El Nino and La Nina, and abnormally changed the temperature of seawater. Rainfall concentrates in some locations due to abnormal variations in seawater temperature, causing frequent abnormal floods. It is important to rapidly detect flooded regions to recover and prevent human and property damage caused by floods. This is possible with synthetic aperture radar. This study aims to generate a model that directly derives flood-damaged areas by using modified U-NET and TerraSAR-X images based on Multi Kernel to reduce the effect of speckle noise through various characteristic map extraction and using two images before and after flooding as input data. To that purpose, two synthetic aperture radar (SAR) images were preprocessed to generate the model's input data, which was then applied to the modified U-NET structure to train the flood detection deep learning model. Through this method, the flood area could be detected at a high level with an average F1 score value of 0.966. This result is expected to contribute to the rapid recovery of flood-stricken areas and the derivation of flood-prevention measures.

Possibility Estimating of Unaccessible Area on 1/5,000 Digital Topographic Mapping Using PLEIADES Images (PLEIADES 영상을 활용한 비접근지역의 1/5,000 수치지형도 제작 가능성 평가)

  • Shin, Jin Kyu;Lee, Young Jin;Choi, Hae Jin;Lee, Jun Hyuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.299-309
    • /
    • 2014
  • This paper evaluated the possibility for 1/5,000 digital topographic mapping by using PLEIADES images of 0.5m GSD(Ground Sampling Distance) resolution that has recently launched. Those results of check points by applying the initial RPC(Rational Polynomial Coefficient) of PLEIADES images came out as; RMSE of those were $X={\pm}1.806m$, $Y={\pm}2.132m$, $Z={\pm}1.973m$. Also, if we corrected geometric correction using 16 GCP(Ground Control Point)s, the results of RMSE became $X={\pm}0.104m$, $Y={\pm}0.171m$, $Z={\pm}0.036m$, and t he RMSE of check points were $X={\pm}0.357m$, $Y={\pm}0.239m$, $Z={\pm}0.188m$; which of those results indicated the accuracy of standard adjustment complied in error tolerances of the 1/5,000 scale. Additionally, we converted coordinates of points, obtained by TerraSAR. for comparing with measurements from GPS(Global Positioning System) surveying. The RMSE of comparing converted and GPS points were $X={\pm}0.818m$, $Y={\pm}0.200m$, $Z={\pm}0.265m$, which confirmed the possibility for 1/5,000 digital topographic mapping with PLEIADES images and GCPs. As method of obtaining GCPs in unaccessible area, however, the outcome evaluation of GCPs extracted from TerraSAR images was not acceptable for 1/5,000 digital topographic mapping. Therefore, we considered that further researches are needed on applicability of GCPs extracted from TerraSAR images for future alternative method.