• Title/Summary/Keyword: Terpene

Search Result 181, Processing Time 0.025 seconds

Components of Pine Needles Extract and Functionality of the Dyed Fabrics (솔잎 추출물의 성분 분석 및 염색물의 건강안전 기능성 평가)

  • Joen, Mi-Sun;Park, Myung-Ja
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.2
    • /
    • pp.371-381
    • /
    • 2010
  • The pine needles can be used for four seasons in normal living and it can be taken friendly everywhere as it is distributed over 50% in Korea. The pine needles consist of vitamins, protein, minerals, essential oil and enzyme related to antimicrobial activity. It has effect like high blood pressure, neuralgia and hanged over by terpene, glucokinin, rutin, apigenic acid and tannin. Also the extract of them can be used for dyeing of fabrics. However, the extract components and effects of them are not well known yet. Therefore, the purpose of this study was to investigate the volatile components of the pine needles extract and functionality. The pine needles extract was dyed into various fabrics(nylon, silk, wool and soybean) and mordanted with Al, Cu, Cr, Fe and Sn. The extracted aroma compounds were compared by gas chromatography-mass spectrometry. The major volatile compounds of pine needles verified by using SPME were alpha-pinene, beta-pinene, beta-phellandrene, caryophyllene, ethanon, benzen. A total of 15 compounds were identified by using the SPME fibers. In the UV-visible spectra, the maximum absorption of wavelength of the pine needles ethanol extract appeared at 460, 630nm for chlorophyll component and at 237, 281nm for tannin component with the pine needles distilled water extract. Most of sample showed high antibacterial effect in none mordant but wool fabric showed high antibacterial effect in mordants. The result of UV block test showed a superior ability of blocking ultraviolet ray infiltration in all sample.

Changes in Esterase Isozyme Activity After Pesticides Treatment in Digestive Juice of Monochamus saltuarius (Gebler) Adult (북방수염하늘소(Monochamus saltuarius) 성충의 살충제 처리에 따른 소화 효소의 활성 변화)

  • Park, Yong-Chul;Cho, Sae-Youll
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • Esterase isozymes were investigated from digestive juice of M. saltuarius adults after pesticide treatment. Twelve esterase isozymes were separated on 12% native-PAGE gel and stained with three different substrates(${\alpha}$-naphthyl acetate, ${\beta}$-naphthyl acetate, and ${\alpha}$-naphthyl butyrate). Interestingly, the isozyme of Est1(${\alpha}$-naphthyl acetate) was strongly inhibited by the carbofuran and methomyl. The Est1 activity was completely inhibited by the chlorpyrifos and partially inhibited by methidation about 70 %. In addition, eserine suppressed esterase isozyme activities of Est1 about 70% and isozyme activities of Est2, Est3, and Est4 were weakly inhibited. ${\alpha}$-pinene did not suppressed esterase isozyme activities but activities of esterases were very weakly inhibited in camphor and bornyl acetate.

Biological Effects of the Leaves and Roots of Ligularia stenocephala (곤달비 잎과 뿌리의 생물 활성)

  • Nam, Young-Joo;Lee, Dong-Ung
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1381-1387
    • /
    • 2013
  • The leaves and roots of Ligularia stenocephala, which are widely used as a food in Korea, were investigated for their antioxidant activities and cytotoxicity in vitro, and their hepatoprotective effect, alcohol detoxicant efficacy, and memory-enhancing property were investigated in vivo. The unique odor of the leaves was analyzed by GC-MS. Lipid peroxidation, superoxide anion formation, and DPPH radicals were inhibited remarkably by the extracts of the leaves and roots. The leaves of this edible plant significantly protected the hepatotoxicity induced by carbon tetrachloride and further diminished the blood alcohol content in mice. While the roots of this plant exhibited adequate cytotoxicity against four human tumor cell lines, especially against melanoma, the leaves revealed relatively weak activity. Both the leaves and the roots exerted an excellent ameliorating property on scopolamine-induced memory impairment in the passive avoidance task using an animal model. The hexane fraction of the leaves was analyzed by GC-MS, suggesting that a series of terpenoids may be odorous compounds in this plant.

Metabolome Analysis and Aroma Characteristics of Fermented Fruit Vinegar (발효 과일식초의 대사체 분석 및 향기 특성)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ryu, Su-Jin;Shin, Woo-Chang;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.416-424
    • /
    • 2018
  • Vinegar was prepared from the fruits produced in Gangwon province, and major metabolite and aroma components were investigated for acetic acid fermentation. In the case of Meoru-Bokbunja vinegar, the ${\text\tiny{L}}$-alanine content was greatly changed by acetic acid fermentation. Acetic acid had the highest content (43%) of total aromatic components, and the contents of ester compounds, such as ethyl acetate and isoamyl acetate, were significantly increased after fermentation. Omija-Makgeolli vinegar produced linalool and hexanoic acid by fermentation, and terpenoid compound was prevalent (41.5%). ${\text\tiny{L}}$-alanine was also increased in Omija-Makgeolli vinegar, similar to that of Meoru-Bokbunja vinegar. Terpene compounds, such as terpinel-4-ol and ${\alpha}$-terpineol in Omija-Makgeolli vinegar, and ethyl acetate in Meoru-Bokbunja vinegar, were identified as major components in each aromatic formulation.

Components of phytoncide from a pine forest in the southern temperate zone

  • Lee, Jeong Do;Park, Choong Hee;Joung, Da Wou;Koo, Seung Mo;Park, Bum Jin
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This study was conducted to examine the components of phytoncide from a pine forest in the southern temperate zone. Recent studies have found that a large amount of phytoncide is released not only from cypress trees but also from pine trees. Because the amount released is the highest during summer, we selected a warm climate region in the southern temperate zone and measured the concentration in the month of August. To capture the phytoncide from the forest atmosphere, we used the adsorption tube method with a mini pump and successfully gathered 9 L of forest air at a flow rate of 150 mL/min. We performed duplicate sampling from two different tubes installed at the same location and derived the mean value. A gas chromatography/mass spectrometer detector with thermal desorption spectroscopy was utilized to perform quantitative and qualitative analyses of the captured material. The results showed that the average phytoncide particle of the pine forest in the southern temperate zone contained a number of components as follows in descending order: ${\alpha}$-Pinene (39%, $0.28ng/m^3$), followed by ${\beta}$-Pinene (16%, $0.11ng/m^3$), D-Limonene (8%, $0.06ng/m^3$), camphor (6%, $0.04ng/m^3$), camphene (6%, $0.04ng/m^3$), and p-Cymene (5%, $0.04ng/m^3$). There were also 13 additional phytoncide components in trace amounts. The results of this study are expected to provide a useful dataset for building a "Healing-forest".

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Variovorax terrae sp. nov. Isolated from Soil with Potential Antioxidant Activity

  • Woo, Chae Yung;Kim, Jaisoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.855-861
    • /
    • 2022
  • A white-pigmented, non-motile, gram-negative, and rod-shaped bacterium, designated CYS-02T, was isolated from soil sampled at Suwon, Gyeonggi-do, Republic of Korea. Cells were strictly aerobic, grew optimally at 20-28℃ and hydrolyzed Tween 40. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CYS-02T formed a lineage within the family Comamonadaceae and clustered as members of the genus Variovorax. The closest members were Variovorax guangxiensis DSM 27352T (98.6% sequence similarity), Variovorax paradoxus NBRC 15149T (98.5%), and Variovorax gossypii JM-310T (98.3%). The principal respiratory quinone was Q-8 and the major polar lipids contain phosphatidylethanolamine (PE), phosphatidylethanolamine (PG), and diphosphatidylglycerol (DPG). The predominant cellular fatty acids were C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The DNA GC content was 67.7 mol%. The ANI and dDDH values between strain CYS-02T and the closest members in the genus Variovorax were ≤ 79.0 and 22.4%, respectively, and the AAI and POCP values between CYS-02T and the other related species in the family Comamonadaceae were > 70% and > 50%, respectively. The genome of strain CYS-02T showed a putative terpene biosynthetic cluster responsible for antioxidant activity which was supported by DPPH radical scavenging activity test. Based on genomic, phenotypic and chemotaxonomic analyses, strain CYS-02T was classified into a novel species in the genus Variovorax, for which the name Variovorax terrae sp. nov., has been proposed. The type strain is CYS-02T (= KACC 22656T = NBRC 00115645T).

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang;Ho Le Han;Yuxin Peng;Doeun Jeon;Donghyun Cho;Cha Young Kim;Jiyoung Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2023
  • The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

Draft Genome Sequence of the Reference Strain of the Korean Medicinal Mushroom Wolfiporia cocos KMCC03342

  • Bogun Kim;Byoungnam Min;Jae-Gu Han;Hongjae Park;Seungwoo Baek;Subin Jeong;In-Geol Choi
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.254-257
    • /
    • 2022
  • Wolfiporia cocos is a wood-decay brown rot fungus belonging to the family Polyporaceae. While the fungus grows, the sclerotium body of the strain, dubbed Bokryeong in Korean, is formed around the roots of conifer trees. The dried sclerotium has been widely used as a key component of many medicinal recipes in East Asia. Wolfiporia cocos strain KMCC03342 is the reference strain registered and maintained by the Korea Seed and Variety Service for commercial uses. Here, we present the first draft genome sequence of W. cocos KMCC03342 using a hybrid assembly technique combining both short- and long-read sequences. The genome has a total length of 55.5 Mb comprised of 343 contigs with N50 of 332 kb and 95.8% BUSCO completeness. The GC ratio was 52.2%. We predicted 14,296 protein-coding gene models based on ab initio gene prediction and evidence-based annotation procedure using RNAseq data. The annotated genome was predicted to have 19 terpene biosynthesis gene clusters, which was the same number as the previously sequenced W. cocos strain MD-104 genome but higher than Chinese W. cocos strains. The genome sequence and the predicted gene clusters allow us to study biosynthetic pathways for the active ingredients of W. cocos.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.