• Title/Summary/Keyword: Ternary compound

Search Result 91, Processing Time 0.036 seconds

A Study on the properties and Fabrication of n-type $CuGaS_2$ Ternary Compound thin film (n-type $CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soom-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.467-468
    • /
    • 2009
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to $150[^{\circ}C$] at intervals of 50[$^{\circ}C$]. As a result, at 300[$^{\circ}C$]of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

Formation of Lipid-LCG with Hydrogenated Lecithin (수소첨가 레시친을 사용한 Lipid-LCG의 생성)

  • Kim, In-Young;Lee, Gun-Bong;Zhoh, Choon-Ku;Kang, Sam-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • In this study, it should be mentioned that Lipid-LCG can be prepared with the main compound of hydrogenated lecithin in oil-in water emulsion. The results of its physical property and stability are as follows. First, the best suitable compositions of Lipid-LCG are made from 4.0wt% of the hydrogenated lecithin, 4.0wt% of cetostearyl alcohol as emulsifier and gelling agent, 3.0wt% of butylene glycol and 2.0wt% glycerin as moisturizers, 3.0wt% of cyclomethicone, 3.0wt% of isononyl-isononanoate, 3.0wt% of capric/caprylic triglycerides, 3.0wt% of macadamia oil as emollients. Second, As the optimum conditions to form Lipid-LCG, which figured out 6.0 ${\pm}$ 1.0 for pH level, 32kg/mm, min for hardness to make a .essence to be formed the ternary phase of liquid crystal(multi-lamellar type). Third, as the analytical result of this system, it obtained that particle size is $1{\sim}8{\mu}m$ level, and is certified with it at 400 and 1,000 magnifications by microscope. The stability of Lipid-LCG is very stable on condition of a low temperature ($4^{\circ}C$), a room temperature ($25^{\circ}C$) and a high temperature ($40^{\circ}C$), which is not to be split in for a long time(for 3-month). We produced our own moisturizing essence, which has a good affinity to skin by means of this system.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

A Study on Interfacial Reaction and Mechanical Properties of 43Sn-57Bi-X solder and Cu Substrate (Sn-Bi-X계 땜납과 Cu 기판과의 계면반응 및 기계적 특성에 관한 연구)

  • Seo, Yun-Jong;Lee, Gyeong-Gu;Lee, Do-Jae
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.807-812
    • /
    • 1998
  • Interfacial reaction and mechanical properties between Sn-Bi-X ternary alloys(X : 2Cu. 2Sb 5In) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 60days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3mm $\textrm{min}^{-1}$ to measure strength and elongation. According to the result of EDS, it is supposed that the soldered interfacial zone was composed of $\textrm{Cu}_{3}\textrm{Sn}$ and $\textrm{Cu}_{6}\textrm{Sn}_{5}$. According to the tensile test of Cu/solder joint, joint strength was decreased by aging treatment. Fractographs of Cu/Sn-Bi solder detailed the effect of aging on fracture behavior. When intermetallic was thin, the fracture occurred through the solder. But as the interfacial intermetallic is thickened, the fracture propagated along the intermetallic/solder interface.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 증착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • Park, Gye-Choon;Jeong, Woon-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase $CuInS_2$ thin film with the highest diffraction peak (112) at diffraction angle $(2\theta)$ of $27.7^{\circ}$ and the second highest diffraction peak (220) at diffraction angle $(2\theta)$ of $46.25^{\circ}$ was well made with chalcopyrite structure at substrate temperature of $70^{\circ}C$, annealing temperature of $250^{\circ}C$, annealing time of 60 min. The $CuInS_2$ thin film had the greatest grain size of $1.2{\mu}m$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that $CuInS_2$ thin film was 5.60 A and 11.12 A respectively. Single phase $CuInS_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type $CuInS_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of $CuInS_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type $CuInS_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, $3.0{\times}104cm^{-1}$ and 1.48 eV respectively. When Cu/In composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type $CuInS_2$ thin film was 821 nm, $6.0{\times}10^4cm^{-1}$ and 1.51 eV respectively.

  • PDF

Structural and Optical Properties of CuInS2 Thin Films Fabricated by Electron-beam Evaporation

  • Jeong, Woon-Jo;Park, Gye-Choon;Chung, Hae-Duck
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2003
  • Single phase CuInS$_2$ thin film with the strongest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second strongest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$was well made with chalcopyrite structure at substrate temperature of 70$^{\circ}C$. annealing temperature of 250$^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 Um when the Cu/In composition ratio of 1.03, where the lattice constant of a and c were 5.60${\AA}$ and 11.12${\AA}$, respectively. The Cu/In stoichiometry of the single-phase CuInS$_2$thin films was from 0.84 to 1.3. The film was p-type when tile Cu/In ratio was above 0.99 and was n-type when the Cu/In was below 0.95. The fundamental absorption wavelength, absorption coefficient and optical band gap of p-type CuInS$_2$ thin film with Cu/In=1.3 were 837nm, 3.OH 104 cm-1 and 1.48 eV, respectively. The fundamental absorption wavelength absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film with Cu/In=0.84 were 821 nm, 6.0${\times}$10$^4$cm$\^$-1/ and 1.51 eV, respectively.

A Study on the Precipitation Behavior of $Al_2Ti$ Phase in $L1_0$-TiAl and $L1_2-(Al,Cr)_3Ti$ ($L1_0$-TiAl 및 $L1_2-(Al,Cr)_3Ti$ 중에 $Al_2Ti$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Structural studies have been performed on precipitation hardening and microstructural variations found in Ti-Al-Cr ternary $L1_0$- and $L1_2$-phase alloys using transmission electron microscopy. Both the $L1_0$ and $L1_2$ phase alloys harden by aging at 973 K after solution annealing at higher temperatures. The amount of age hardening of the $L1_2$ phase alloy is larger than that of the $L1_0$ phase alloy. The phase separation between $L1_0$ and $L1_2$ phase have not been observed by aging at 973 K. But $Al_2Ti$ was formed in each matrix alloy during aging. The crystal structure of the $Al_2Ti$ phase is a $Ga_2Zr$ type in the $L1_0$ and a $Ga_2Hf$ type in the $L1_2$ phase, respectively. At the beginning of aging the fine coherent cuboidal $Al_2Ti$-phase are formed in the $L1_0$ phase. By further aging, two variants of $Al_2Ti$ precipitates grow along the two {110} habit planes. On the other hand, in the $L1_2$ phase, the $Al_2Ti$ phase forms on the {100} planes of the $L1_2$ matrix lattice. After prolonged aging the precipitates are rearranged along a preferential direction of the matrix lattice and form a domain consisting of only one variant. It is suggested that the precipitation of $Al_2Ti$ in each matrix alloy occurs to form a morphology which efficiently relaxes the elastic strain between precipitate and matrix lattices.

A Study of the Properties of CuInS2 Thin Film by Sulfurization

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.73-76
    • /
    • 2010
  • The copper indium disulfide ($CuInS_2$) thin film was manufactured using sputtering and thermal evaporation methods, and the annealing with sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate, the annealing temperature and the composition ratio, and the characteristics thereof were investigated. The $CuInS_2$ thin film was manufactured by the sulfurization of a soda lime glass (SLG) Cu/In/S stacked [1] elemental layer deposited on a glass substrate by vacuum chamber annealing [2] with sulfurization for various times at a temperature of substrate temperature of $200^{\circ}C$. The structure and electrical properties of the film was measured in order to determine the optimum conditions for the growth of $CuInS_2$ ternary compound semiconductor $CuInS_2$ thin films with a non-stoichiometric composition. The physical properties of the thin film were investigated under various fabrication conditions [3,4], including the substrate temperature, annealing temperature and annealing time by X-ray diffraction (XRD), field Emission scanning electron microscope (FE-SEM), and Hall measurement systems. [5] The sputtering rate depending upon the DC/RF power was controlled so that the composition ratio of Cu versus In might be around 1:1, and the substrate temperature affecting the quality of the film was varied in the range of room temperature (RT) to $300^{\circ}C$ at intervals of $100^{\circ}C$, and the annealing temperature of the thin film was varied RT to $550^{\circ}C$ in intervals of $100^{\circ}C$.

Growth and Characterization of $ACu_3Ti_4O_{12}$(A=Ca, Sr) Single Crystals

  • Yoo, Sang-Im;Sangdon Yang;Geomyung Shin;Wee, Seong-Hun;Park, Hyun-Min
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.19-19
    • /
    • 2003
  • A cubic perovskite-type CaCu₃Ti₄O/sub 12/ compound has recently drawn a great attention because of an extraordinary high permittivity (~10⁴ at 1 kHz) at room temperature and its near temperature-independence over a wide temperature region, and thus numerous literature have been reported on CCTO polycrytalline ceramics and thin films. However, only a few literature have been reported on the CCTO single due to the lack of information about the CCTO primary phase field. On the basis of our recent experimental determination of the CCTO primary phase field, we could grow ACu₃Ti₄O/sub 12/(A=Ca, Sr) single crystals using both top-seeded solution growth and flux growth methods. This presentation will include three major parts. In part I, the thermal decomposition reaction of CCTO and its primary phase field in the CaO-CuO-TiO₂ ternary system will be presented. Detailed growth conditions of ACu₃Ti₄O/sub 12/(A=Ca, Sr) single crystals and characteristics of as-grown crystals will be followed in Part II. Part III will be comprised of dielectric properties of as-grown ACu₃Ti₄O/sub 12/(A=Ca, Sr) single crystals. Our experimental results will be compared with those of previous reports for discussion.

  • PDF

Epitaxial Cobalt Silicide Formation using Co/Ti/(100) Si Structure (Co/Ti(100)Si 이중층을 이용한 에피텍셜 Co 실리사이드의 형성)

  • Kwon, Young-Jae;Lee, Chong-Mu;Bae, Dae-Lok;Kang, Ho-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.484-492
    • /
    • 1998
  • The formation mechanism of the epitaxial cobalt silicide from Co/Ti/OOO) Si structure has been investigated. The transition temperature of CoSi to CoSi, was found to increase with increasing the Ti interlayer thickness, which may be owing to the occupation of the tetrahedral sites by Ti atoms in the CoSi crystal structure as well as the blocking effect of the Ti interlayer on the diffusion of Co. Also, the Co- Ti-O ternary compound formed at the metal! Si interface at the begining of silicidation, which seems to play an important role in epitaxial growth of Co silicide. The final layer structures obtained after a rapid thermal annealing of the Cot Ti/( 100) Si bi-layer structure turned out to be Ti oxide/Co- Ti-Si/epi-$CoSi_2$/OOO)

  • PDF