• Title/Summary/Keyword: Ternary Solution

Search Result 131, Processing Time 0.021 seconds

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.

Preparation and Properties of W/O Emulsion by D Phase Emulsification (D상 유화물을 이용한 W/O 유화물의 제조와 특성)

  • Kim, H.J.;Jeong, N.H.;Yun, Y.K.;Park, K.S.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.25-32
    • /
    • 1998
  • The emulsion stability of W/O emulsion prepared by D phase emulsification during storage and handling is studied by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, followed by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetrasiloxane(OMCS) in the surfactant solution. Polyols were essential components for this purpose. To understand the function of polyols, the solution behavior of nonionic surfactant/oil/water/polyol systems were investigated by the ternary phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The addition of PG increased the solubility of oil in the isotropic surfactant phase. D phase emulsification method has been applied to a new type of cosmetics. By using this emulsification technique, O/W emulsion were formed without a need for adjust of HLB. Fine and stable W/O emulsions were prepared by D phase emulsion.

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei;Wang, Haiyan;Zou, Guifu;Bauer, Eve;Mccleskey, Thomas M.;Burrell, Anthony K.;Jia, Quanxi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

Binary and Ternary Competitive Adsorption of Basic Dyes from Aqueous Solution onto the Conchiolin Layer (수용액에서의 이성분 및 삼성분 염기성 염료의 진주층에 대한 경쟁흡착)

  • Shin, Choon-Hwan;Song, Dong-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.270-275
    • /
    • 2006
  • The cultivated pearls collected for the study were pretreated through the removal of contaminants and the surface bleaching for easy dyeing. Coloring of pearls are necessary after selecting dyes adsorbable to the Conchiolin layer, a kind of hard protein formed in the seawater, covering the surface of the pretreated pearls. Dyes adsorbable to the Conchiolin layers are mostly basic dyes such as Rhodamine 6G(R6G), Rhodamine B(RB), Methylene Blue(MB) etc. and the binary and ternary competitive adsorption were performed by mixing two or three dyes together. The multi-dye adsorption data were compared with the predictions from the ideal adsorbed solution theory(IASI) combined with the single-dye adsorption model, the Langmuir or the Redlich-Peterson(RP) model. The quality of prediction was compared by using determination coefficient($R^2$) and standard deviation(SSE) values. Predictions from the IAST were found to be in good agreement with the data for the R6G/RB binary adsorption to the pearl layers not fractionated with their size, except for the adsorption data for RB at high concentrations. Among the three binary adsorption systems, R6G/RB, R6G/MB, and MB/RB, only the RB sorption data in the R6G/RB binary system was in poor agreement with the IAST prediction. Competitive adsorption data in ternay systems were in good agreement with the predictions from the IAST except for the RB data.

Structure and Properties of $LiTaO_3$ Type Solid Solutions in $Li_2O-Al_2O_3-Ta_2O_5$ Ternary System ($Li_2O-Al_2O_3-Ta_2O_5$ 삼성분계에 있어 $LiTaO_3$ 고용체의 구조 및 특성에 관한 연구)

  • 김정돈;흥국선;주기태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.405-410
    • /
    • 1996
  • The partial substitution of LiTaO3 with Al2O3 caused the variation of dielectric properties and a lower melting temperature yielding an easier growth of single crystal. The lattice constants and Raman band broadening were measured for the LiTaO3 solid solution in which the cations of Li+ and Ta5+ were partially substituted by Al3+ cation. The LiTaO3 type limit phases were obtained. ; Li1.15Al0.45Ta0.7O3 for cationic excess Li1.15Al0.45Ta0.7O3 for stoichiometry Li0.85Al0.05TaO3 for cationic deficit. The second phase was formed beyond the solubility limit. The limit phase (Li0.85Al0.05TaO3) in the region of cationic deficit showed the lowest Cuire temperature of 61$0^{\circ}C$ and melting point of 152$0^{\circ}C$ compared to the solid solutions in other regions (TMp=1$650^{\circ}C$, Tc=69$0^{\circ}C$ for LiTaO3)

  • PDF

An Optimum Design of Secondary Battery using Design of Experiments with Mixture (혼합물 실험계획법을 이용한 이차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.402-411
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Effect of n-type Dopants on CoSb3 Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering (Spark Plasma Sintering 법으로 제조한 CoSb3 Skutterudite계 열전소재의 n형 첨가제 효과)

  • Lee, Jae-Ki;Choi, Soon-Mok;Lee, Hong-Lim;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.326-330
    • /
    • 2010
  • $CoSb_3$ Skutterudites materials have high potential for thermoelectric application at mid-temperature range because of their superior thermoelectric properties via control of charge carrier density and substitution of foreign atoms. Improvement of thermoelectric properties is expected for the ternary solid solution developed by substitution of foreign atoms having different valances into the $CoSb_3$ matrix. In this study, ternary solid solutions with a stoichiometry of $Co_{1-x}Ni_xSb_3$ x = 0.01, 0.05, 0.1, 0.2, $CoSb_{3-y}Te_y$, y = 0.1, 0.2, 0.3 were prepared by the Spark Plasma Sintering (SPS) system. Before the SPS synthesis, the ingots were synthesized by vacuum induction melting and followed by annealing. For phase analysis X-ray powder diffraction patterns were checked. All the samples were confirmed as single phase; however, with samples that were more doped than the solubility limit some secondary phases were detected. All the samples doped with Ni and Te atoms showed a negative Seebeck coefficient and their electrical conductivities increased with the doping amount up to the solubility limit. For the samples prepared by SPS the maximum value for dimensionless figure of merit reached 0.26, 0.42 for $Co_{0.9}Ni_{0.1}Sb_3$, $CoSb_{2.8}Te_{0.2}$ at 690 K, respectively. These results show that the SPS method is effective in this system and Ni/Te dopants are also effective for increasing thermoelectric properties of this system.