• Title/Summary/Keyword: Terminating Shock

Search Result 2, Processing Time 0.014 seconds

Effect of Nonequilibrium Condensation on the Oscillation of the Terminating Shock in a Transonic Airfoil Flow (천음속 익형 유동에 있어서 비평형 응축이 충격파 진동에 미치는 영향)

  • Kim, Jin-Soo;Lee, Sung-Jin;Alam, Miah Md. Ashraful;Kwon, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • In this study, to find the effect of nonequilibrium condensation on the oscillation of the terminating shock wave in transonic flows, an NACA0014 airfoil flow with nonequilibrium condensation is analyzed using the total variation diminishing (TVD) numerical scheme. Transonic free stream Mach numbers of 0.81-0.87 are tested with variations in the stagnation relative humidity. For the same free stream Mach number and attack angle of ${\alpha}=0^{\circ}$, an increase in the stagnation relative humidity attenuates the strength of the terminating shock and reduces the oscillation of the terminating shock wave. Furthermore, for the same stagnation relative humidity, the larger the free stream Mach number becomes, the shorter the period of the oscillation shock wave is. The excursion distance of the oscillation shock increases with the free stream Mach numbers for the same stagnation relative humidity. Finally, it is found that for the same shock location, the strength of the oscillating shock facing upstream is stronger than that facing downstream.

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.