• Title/Summary/Keyword: Terminal deletion

Search Result 112, Processing Time 0.016 seconds

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli (Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.158-166
    • /
    • 2020
  • A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

Loss of the Retinoblastoma Gene in Non-Small Cell Lung Cancer (비소세포폐암에서의 망막모세포종유전자의 소실)

  • Lee, Choon-Taek;Kim, Chang-Min;Zo, Jae-Ill;Shim, Young-Mog;Hong, Weon-Seon;Lee, Jhin-Oh;Kang, Tae-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 1993
  • Background: Inactivation of retinoblastoma gene (Rb) has been observed in a variety of human cancers. Loss of heterozygosity (LOH) of Rb which is a common mode of allelic inactivation of Rb, has been known as a frequent genetic event in small cell lung cancer but it has been detected less frequently in non-small cell lung cancer. To define the role of Rb deletion in lung cancer, we investigated the genomic DNAs of 43 non-small cell lung cancers and 1 small cell lung cancer paired with normal lung tissues obtained by thoracotomy. Methods: The genomic DNAs were obtained by the digestion with proteinase K followed by phenol-chloroform extraction method. The genomic DNAs were digested by restriction endonuclease (EcoRI), separated by agarose gel electrophoresis, transferred to nylon membrane by Southern blot transfer and then hybridized with labelled Rb 1 probe which contains. 1.4 kb sized DNA sequence containing N-terminal portion of Rb. Results: In 26 squamous cell lung cancers, 16 cases were informative after EcoRI digestion and LOH of Rb was found in 10 cases (62.5%). In 17 adenocarcinomas of lung, 11 cases were informative and LOH of Rb was found in five cases (45.4%). The analysis of clinical parameters revealed no significant differences between the two groups with or without LOH of Rb in the aspects of age, sex, degree of differentiation, stage and smoking amount. Conclusions: These results suggest that Rb inactivation is also significantly involved in the molecular pathogenesis of non-small cell lung cancer.

  • PDF