• 제목/요약/키워드: Terminal Voltage Control

검색결과 177건 처리시간 0.02초

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

1기 무한모선 전력계통의 적응 전압 제어와 거버너를 이용한 주파수 진동의 억제 (Adaptive Voltage Control of a Single Machine Infinite Bus(SMIB) Power System with Governor Control for Reduced Oscillation of the Frequency)

  • 김석균;윤태웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.51-52
    • /
    • 2008
  • In this paper, we propose two control schemes. The first control scheme is an adaptive passivity-based excitation control which regulates the terminal voltage to its reference. This controller is obtained through two steps: firstly, a simple direct adaptive passivation controller is designed for the power system with parametric uncertainties; then a linear PI controller is applied to converge the terminal voltage to its reference. The second control scheme is a linear governor control which consists of the frequency and the mechanical power. It is shown that the internal dynamics are locally stable with controllable damping. In the end, the boundness of all electrical variables, the frequency, the mechanical power, and the convergence of the terminal voltage to its reference can be achieved by these control schemes.

  • PDF

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘 (Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase)

  • 윤용호;원충연
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Adaline-Based Control of Capacitor Supported DVR for Distribution System

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.386-395
    • /
    • 2009
  • In this paper, a new control algorithm for the dynamic voltage restorer (DVR) is proposed to regulate the load terminal voltage during various power quality problems that include sag, swell, harmonics and unbalance in the voltage at the point of common coupling (PCC). The proposed control strategy is an Adaline (Adaptive linear element) Artificial Neural Network (ANN) and is used to control a capacitor supported DVR for power quality improvement. A capacitor supported DVR does not need any active power during steady state because the voltage injected is in quadrature with the feeder current. The control of the DVR is implemented through derived reference load terminal voltages. The proposed control strategy is validated through extensive simulation studies using the MATLAB software with its Simulink and SimPower System (SPS) toolboxes. The DVR is found suitable to support its dc bus voltage through the control under various disturbances.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

A Voltage Control Method based on Constants of Four Terminals Network Modeling of Distribution Networks

  • Yang, Xia;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.354-362
    • /
    • 2008
  • In this paper, a new algorithm of optimal voltage control is proposed for the Distribution Automation System (DAS) based on constants of four terminal network modeling. In the proposed method, the voltage profiles along feeders are estimated from the measurement of the current and power factor by a Feeder Remote Terminal Unit (FRTU) installed at each node. Whenever the voltage profile violates the restriction, the voltage control strategy is applied to keep the voltage levels along the feeders within the pre-specified range through the modification and coordination of the transformer under-load tap changers (ULTC), step voltage regulator (SVR), as well as shunt condenser. In the case studies, the estimation and control of the voltages have been testified in a radial distribution system with 11 nodes.

브러쉬리스 동기발전기 자동전압조정기의 제어성능 향상을 위한 연구 (A study on improvement of the control performance of the automatic voltage regulator of a brushless synchronous generator)

  • 이영찬;김종수;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.909-915
    • /
    • 2014
  • 선박과 육상용 브러쉬리스 동기발전기의 자동전압조정기는 출력 단자전압을 주로 PID 제어방식으로 제어한다. 하지만 발전기 전력계통에서 부하의 변화량과 변화횟수가 클 경우에는 PID 제어방식으로는 전압의 변화량과 정정시간에 대해 강인한 제어성능을 발휘하기 어려워진다. 본 논문에서는 PID 제어방식에 비해 기준 단자전압 값에 대한 추종성능이 우수한 퍼지제어방식을 사용하여 자동전압조정기의 발전기 단자전압을 조정하는 기법을 제안하였으며, MATLAB/SIMULINK 시뮬레이션을 통해 동기발전기 자동전압 조정성능에 대한 우수성을 입증하였다.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.