• Title/Summary/Keyword: Term frequency-inverse document frequency

Search Result 96, Processing Time 0.023 seconds

Analysis of Media Articles on COVID-19 and Nurses Using Text Mining and Topic Modeling (텍스트 마이닝과 토픽모델링 분석을 활용한 코로나19와 간호사에 대한 언론기사 분석)

  • An, Jiyeon;Yi, Yunjeong;Lee, Bokim
    • Research in Community and Public Health Nursing
    • /
    • v.32 no.4
    • /
    • pp.467-476
    • /
    • 2021
  • Purpose: The purpose of this study is to understand the social perceptions of nurses in the context of the COVID-19 outbreak through analysis of media articles. Methods: Among the media articles reported from January 1st to September 30th, 2020, those containing the keywords '[corona or Wuhan pneumonia or covid] and [nurse or nursing]' are extracted. After the selection process, the text mining and topic modeling are performed on 454 media articles using textom version 4.5. Results: Frequency Top 30 keywords include 'Nurse', 'Corona', 'Isolation', 'Support', 'Shortage', 'Protective Clothing', and so on. Keywords that ranked high in Term Frequency-Inverse Document Frequency (TF-IDF) values are 'Daegu', 'President', 'Gwangju', 'manpower', and so on. As a result of the topic analysis, 10 topics are derived, such as 'Local infection', 'Dispatch of personnel', 'Message for thanks', and 'Delivery of one's heart'. Conclusion: Nurses are both the contributors and victims of COVID-19 prevention. The government and the nurses' community should make efforts to improve poor working conditions and manpower shortages.

A Study on the Perception of Metaverse Fashion Using Big Data Analysis

  • Hosun Lim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2023
  • As changes in social and economic paradigms are accelerating, and non-contact has become the new normal due to the COVID-19 pandemic, metaverse services that build societies in online activities and virtual reality are spreading rapidly. This study analyzes the perception and trend of metaverse fashion using big data. TEXTOM was used to extract metaverse and fashion-related words from Naver and Google and analyze their frequency and importance. Additionally, structural equivalence analysis based on the derived main words was conducted to identify the perception and trend of metaverse fashion. The following results were obtained: First, term frequency(TF) analysis revealed the most frequently appearing words were "metaverse," "fashion," "virtual," "brand," "platform," "digital," "world," "Zepeto," "company," and "game." After analyzing TF-inverse document frequency(TF-IDF), "virtual" was the most important, followed by "brand," "platform," "Zepeto," "digital," "world," "industry," "game," "fashion show," and "industry." "Metaverse" and "fashion" were found to have a high TF but low TF-IDF. Further, words such as "virtual," "brand," "platform," "Zepeto," and "digital" had a higher TF-IDF ranking than TF, indicating that they had high importance in the text. Second, convergence of iterated correlations analysis using UNICET revealed four clusters, classified as "virtual world," "metaverse distribution platform," "fashion contents technology investment," and "metaverse fashion week." Fashion brands are hosting virtual fashion shows and stores on metaverse platforms where the virtual and real worlds coexist, and investment in developing metaverse-related technologies is under way.

Impact of Diverse Document-evaluation Measure-based Searching Methods in Big Data Search Accuracy (빅데이터 검색 정확도에 미치는 다양한 측정 방법 기반 검색 기법의 효과)

  • Kim, Ji young;Han, DaHyeon;Kim, Jongkwon
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.553-558
    • /
    • 2017
  • With the rapid growth of Big Data, research on extracting meaningful information is being pursued by both academia and industry. Especially, data characteristics derived from analysis, and researcher intention are key factors for search algorithms to obtain accurate output. Therefore, reflecting both data characteristics and researcher intention properly is the final goal of data analysis research. The data analyzed properly can help users to increase loyalty to the service provided by company, and to utilize information more effectively and efficiently. In this paper, we explore various methods of document-evaluation, so that we can improve the accuracy of searching article one of the most frequently searches used in real life. We also analyze the experiment result, and suggest the proper manners to use various methods.

Analysis of Symptoms-Herbs Relationships in Shanghanlun Using Text Mining Approach (텍스트마이닝 기법을 이용한 『상한론』 내의 증상-본초 조합의 탐색적 분석)

  • Jang, Dongyeop;Ha, Yoonsu;Lee, Choong-Yeol;Kim, Chang-Eop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.159-169
    • /
    • 2020
  • Shanghanlun (Treatise on Cold Damage Diseases) is the oldest document in the literature on clinical records of Traditional Asian medicine (TAM), on which TAM theories about symptoms-herbs relationships are based. In this study, we aim to quantitatively explore the relationships between symptoms and herbs in Shanghanlun. The text in Shanghanlun was converted into structured data. Using the structured data, Term Frequency - Inverse Document Frequency (TF-IDF) scores of symptoms and herbs were calculated from each chapter to derive the major symptoms and herbs in each chapter. To understand the structure of the entire document, principal component analysis (PCA) was performed for the 6-dimensional chapter space. Bipartite network analysis was conducted focusing on Jaccard scores between symptoms and herbs and eigenvector centralities of nodes. TF-IDF scores showed the characteristics of each chapter through major symptoms and herbs. Principal components drawn by PCA suggested the entire structure of Shanghanlun. The network analysis revealed a 'multi herbs - multi symptoms' relationship. Common symptoms and herbs were drawn from high eigenvector centralities of their nodes, while specific symptoms and herbs were drawn from low centralities. Symptoms expected to be treated by herbs were derived, respectively. Using measurable metrics, we conducted a computational study on patterns of Shanghanlun. Quantitative researches on TAM theories will contribute to improving the clarity of TAM theories.

Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique (키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석)

  • Youngseok Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2023
  • In this study, trends in ICT education were investigated by analyzing the frequency of appearance of keywords related to machine learning and using conversion of iteration correction(CONCOR) techniques. A total of 304 papers from 2018 to the present published in registered sites were searched on Google Scalar using "ICT education" as the keyword, and 60 papers pertaining to ICT education were selected based on a systematic literature review. Subsequently, keywords were extracted based on the title and summary of the paper. For word frequency and indicator data, 49 keywords with high appearance frequency were extracted by analyzing frequency, via the term frequency-inverse document frequency technique in natural language processing, and words with simultaneous appearance frequency. The relationship degree was verified by analyzing the connection structure and centrality of the connection degree between words, and a cluster composed of words with similarity was derived via CONCOR analysis. First, "education," "research," "result," "utilization," and "analysis" were analyzed as main keywords. Second, by analyzing an N-GRAM network graph with "education" as the keyword, "curriculum" and "utilization" were shown to exhibit the highest correlation level. Third, by conducting a cluster analysis with "education" as the keyword, five groups were formed: "curriculum," "programming," "student," "improvement," and "information." These results indicate that practical research necessary for ICT education can be conducted by analyzing ICT education trends and identifying trends.

Text Mining and Association Rules Analysis to a Self-Introduction Letter of Freshman at Korea National College of Agricultural and Fisheries (1) (한국농수산대학 신입생 자기소개서의 텍스트 마이닝과 연관규칙 분석 (1))

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.113-129
    • /
    • 2020
  • In this study we examined the topic analysis and correlation analysis by text mining to extract meaningful information or rules from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries in 2020. The analysis items are described in items related to 'academic' and 'in-school activities' during high school. In the text mining results, the keywords of 'academic' items were 'study', 'thought', 'effort', 'problem', 'friend', and the key words of 'in-school activities' were 'activity', 'thought', 'friend', 'club', 'school' in order. As a result of the correlation analysis, the key words of 'thinking', 'studying', 'effort', and 'time' played a central role in the 'academic' item. And the key words of 'in-school activities' were 'thought', 'activity', 'school', 'time', and 'friend'. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results. In the next study, TF-IDF(Term Frequency-Inverse Document Frequency) analysis using 'frequency of keywords' and 'reverse of document frequency' will be performed as a method of extracting key words from a large amount of documents.

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

Comparison of Topics Related to Nurse on the Internet Portals and Social Media Before and During the COVID-19 era Using Topic Modeling (토픽 모델링을 활용한 COVID-19 발생 전후 간호사 관련 토픽 비교: 인터넷 포털과 소셜미디어를 중심으로)

  • Yoon, Young Mi;Kim, Seong Kwang;Kim, Hye Kyeong;Kim, Eun Joo;Jeong, Yuneui
    • Journal of muscle and joint health
    • /
    • v.27 no.3
    • /
    • pp.255-267
    • /
    • 2020
  • Purpose: The purpose of this study is to compare topics through keywords related to nurses in internet portals and social media Pre coronavirus disease (COVID-19) era and during the COVID-19 era. Methods: For six months before and during the outbreak of COVID-19 in Korea, "nurse" was searched on the internet. For data collection, we implemented web crawlers in programming languages such as Python and collected keywords. The keywords collected were classified into three domains of topic Modeling. Results: The keyword 'nurse' increased by 15% during COVID-19 era. Keywords that ranked high in Term Frequency - Inverse Document Frequency (TF-IDF) values were before COVID-19, such as "nurse" and "C-section". during COVID-19, however, they were not only "nurse" but also "emergency" and "gown" related to pandemics. Conclusion: Various topics were being uploaded into the internet media. Nursing professionals should be interested in the text that is revealed in the internet media and try to continuously identify and improve problems.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

Analysis of speech in game marketing video using text mining techniques (텍스트 마이닝 기법을 이용한 게임 마케팅 비디오에서의 스피치 분석)

  • Lee, Yeokyung;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.147-159
    • /
    • 2022
  • Nowadays, various social media platforms are widely spread and people closely use such platforms in daily life. By doing so, social influencers with a large number of subscribers, views, and comments have huge impact in our society. Following this trend, many companies are actively using influencers for marketing purpose to promote their products and services. In this study, we extract the speeches of influencers from videos for game marketing and analyze them using various text mining techniques. In the analysis, we distinguish game videos leading to successful marketing and failed marketing, and we explore and compare the linguistic features of the influencers for successful and failed marketings.