In general Information retrieval systems, improper keywords are often extracted and different search results are offered comparing to user's aim bacause the systems use only term frequency informations for selecting keywords and don't consider their meanings. It represents that improving precision is limited without considering semantics of keywords because recall ratio and precision have inverse proportion relation. In this paper, a system which is able to improve precision without decreasing recall ratio is designed and implemented, as client user module is introduced which can send feedbacks to server with user's intention. For this purpose, keywords are selected using relative term frequency and inverse document frequency and co-occurrence words are extracted from original documents. Then, the keywords are clustered by their semantics using calculated mutual informations. In this paper, the system can reject inappropriate documents using segmented semantic informations according to feedbacks from client user module. Consequently precision of the system is improved without decreasing recall ratio.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.236-236
/
2021
최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.154-156
/
2002
인터넷의 발전으로 우리는 많은 정보와 지식을 인터넷에서 제공받을 수 있으며 HTML, 뉴스그룹 문서, 전자메일 등의 웹 문서로 존재한다. 이러한 웹 문서들은 여러가지 목적으로 분류해야 할 필요가 있으며 이를 적용한 시스템으로는 Personal WebWatcher, InfoFinder, Webby, NewT 등이 있다. 웹 문서 분류 시스템에서는 문서분류 기법을 사용하여 웹 문서의 소속 클래스를 결정하는데 문서분류를 위한 기법 중 대표적인 알고리즘으로 나이브 베이지안(Naive Baysian), k-NN(k-Nearest Neighbor), TFIDF(Term Frequency Inverse Document Frequency)방법을 이용한다. 본 논문에서는 웹 문서를 대상으로 이러한 문서분류 알고리즘 각각의 성능을 비교 및 평가하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.230-231
/
2023
악성코드를 탐지하는 기법 중 동적 분석데이터와 같은 시계열 데이터는 프로그램마다 호출되는 API의 수가 모두 다르다. 하지만 딥러닝 모델을 통해 분석할 때는 모델의 입력이 되는 데이터의 크기가 모두 같아야 한다. 이에 본 논문은 TF-IDF(Term Frequency-Inverse Document Frequency)와 슬라이딩 윈도우 기법을 이용해 프로그램의 동적 특성을 유지하면서 데이터의 길이를 일정하게 만들 수 있는 전처리 기법과 LSTM(Long Short-Term Memory) 모델을 통해 정확도(Accuracy) 95.89%, 재현율(Recall) 97.08%, 정밀도(Precision) 95.9%, F1-score 96.48%를 달성했다.
Journal of information and communication convergence engineering
/
v.20
no.4
/
pp.309-316
/
2022
This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.
Journal of the Korean Society for information Management
/
v.4
no.1
/
pp.47-86
/
1987
The purpose of this study is to present an effective automatic indexing method of Korean texts based on statistical criteria. Titles and abstracts of the 299 documents randomly selected from ETRI's DOCUMENT data base are used as the experimental data in this study the experimental data is divided into 4 word groups and these 4 word groups are respectively analyzed and evaluated by applying 3 automatic indexing methods including Transition Phenomena of Word Occurrence, Inverse Document Frequency Weighting Technique, and Term Discrimination Weighting Technique.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.4
/
pp.1400-1418
/
2020
In the development of commercial promotion, chatbot is known as one of significant skill by application of natural language processing (NLP). Conventional design methods are using bag-of-words model (BOW) alone based on Google database and other online corpus. For one thing, in the bag-of-words model, the vectors are Irrelevant to one another. Even though this method is friendly to discrete features, it is not conducive to the machine to understand continuous statements due to the loss of the connection between words in the encoded word vector. For other thing, existing methods are used to test in state-of-the-art online corpus but it is hard to apply in real applications such as telemarketing data. In this paper, we propose an improved chatbot design way using hybrid bag-of-words model and skip-gram model based on the real telemarketing data. Specifically, we first collect the real data in the telemarketing field and perform data cleaning and data classification on the constructed corpus. Second, the word representation is adopted hybrid bag-of-words model and skip-gram model. The skip-gram model maps synonyms in the vicinity of vector space. The correlation between words is expressed, so the amount of information contained in the word vector is increased, making up for the shortcomings caused by using bag-of-words model alone. Third, we use the term frequency-inverse document frequency (TF-IDF) weighting method to improve the weight of key words, then output the final word expression. At last, the answer is produced using hybrid retrieval model and generate model. The retrieval model can accurately answer questions in the field. The generate model can supplement the question of answering the open domain, in which the answer to the final reply is completed by long-short term memory (LSTM) training and prediction. Experimental results show which the hybrid word vector expression model can improve the accuracy of the response and the whole system can communicate with humans.
Journal of the Korean Society for Library and Information Science
/
v.35
no.4
/
pp.97-122
/
2001
This empirical study investigated the effect of choice of record field(s) upon which to search on retrieval performance for a large operational bibliographic database. The query terms used in the study were identified algorithmically from each target set in four different ways: (1) controlled terms derived from index term frequency weights, (2) uncontrolled terms derived from index term frequency weights. (3) controlled terms derived from inverse document frequency weights, and (4) uncontrolled terms based on universe document frequency weights. Su potable choices of record field were recognised. Using INSPEC terminology, these were the fields: (1) Abstract. (2) 'Anywhere'(i.e., ail fields). (3) Descriptors. (4) Identifiers, (5) 'Subject'(i.e., 'Descriptors' plus Identifiers'). and (6) Title. The study was undertaken in an operational web-based IR environment using the INSPEC bibliographic database. The retrieval performances were evaluated using D measure (bivariate in Recall and Precision). The main findings were that: (1) there exist significant differences in search performance arising from choice of field, using 'mean performance measure' as the criterion statistic; (2) the rankings of field-choices for each of these performance measures is sensitive to the choice of query : and (3) the optimal choice of field for the D-measure is Title.
Objectives: In the health care industry, the influence of online reviews is growing. As medical services are provided mainly by providers, those services have been managed by hospitals and clinics. However, direct promotions of medical services by providers are legally forbidden. Due to this reason, consumers, like patients and clients, search a lot of reviews on the Internet to get any information about hospitals, treatments, prices, etc. It can be determined that online reviews indicate the quality of hospitals, and that analysis should be done for sustainable hospital marketing. Method: Using a Python-based crawler, we collected reviews, written by real patients, who had experienced Korean medicine, about more than 14,000 reviews. To extract the most representative words, reviews were divided by positive and negative; after that reviews were pre-processed to get only nouns and adjectives to get TF(Term Frequency), DF(Document Frequency), and TF-IDF(Term Frequency - Inverse Document Frequency). Finally, to get some topics about reviews, aggregations of extracted words were analyzed by using LDA(Latent Dirichlet Allocation) methods. To avoid overlap, the number of topics is set by Davis visualization. Results and Conclusions: 6 and 3 topics extracted in each positive/negative review, analyzed by LDA Topic Model. The main factors, consisting of topics were 1) Response to patients and customers. 2) Customized treatment (consultation) and management. 3) Hospital/Clinic's environments.
Journal of the Korean Society for information Management
/
v.1
no.1
/
pp.43-62
/
1984
The present study has two main objectives. The first objective is to devise a new term weighting technique which can be used to weight the significance value of each word stem in a test collection of documents on the subject of "enteral hyperalimentation." The next objective is to evaluate retrieval performance of proposed term weighting technique, together with four other term weighting techniques, by conducting a set of experiments. The experimental results have shown that the performance of Sparck Jones's inverse document frequency weighting and the proposed term significance weighting techniques produced better recall and precision ratios than the other three complex weighting techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.