• 제목/요약/키워드: Term Frequency-Inverse document frequency

검색결과 96건 처리시간 0.028초

텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석 (Analysis of the National Police Agency business trends using text mining)

  • 선현석;임창원
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.301-317
    • /
    • 2019
  • 최근 통계적인 기법을 이용하여 대량으로 생산되고 있는 텍스트 데이터를 통해 다양한 인사이트 발굴을 하기 위한 연구가 활발히 진행되고 있다. 본 연구는 경찰청에서 생산하는 텍스트 데이터를 통해 연도별 경찰청의 업무 트렌드를 파악하고, 각 지방청별로 생산되는 문서에서 주요 키워드를 파악하여 지방청 간의 업무 특성을 비교하고자 하였다. 의미 있는 결론을 도출하기 위해 각 자료 특성에 맞는 전처리 과정을 시행하고 문서별 단어 빈도수를 계산하였다. 문서에 나타난 키워드의 단순 출현 빈도로는 해당 키워드가 문서에서 갖는 중요도를 설명하기 힘들기 때문에 단어-역문서 가중치를 이용하여 각 단어에 대한 빈도수를 새롭게 계산하였고 단어의 문서별 및 연도별 빈도 비교를 위해 L2 정규화 기법을 이용하였다. 이러한 분석은 향후 경찰청 업무 개선 정책에 새롭게 활용될 수 있는 기초 자료로 사용될 수 있으며, 경찰청 업무 효율성 향상 및 청내 업무 개선 수요 파악을 위한 방법으로 활용될 수 있다.

용어 클러스터링을 이용한 단일문서 키워드 추출에 관한 연구 (A Study on Keyword Extraction From a Single Document Using Term Clustering)

  • 한승희
    • 한국문헌정보학회지
    • /
    • 제44권3호
    • /
    • pp.155-173
    • /
    • 2010
  • 이 연구에서는 용어 클러스터링을 이용하여 단일문서의 키워드를 추출하는 알고리즘을 제안하고자 한다. 단락단위로 분할한 단일문서를 대상으로 1차 유사도와 2차 분포 유사도를 산출하여 용어 클러스터링을 수행한 결과, 50단어 단락에서 2차 분포 유사도를 적용했을 때 가장 우수한 성능을 나타냈다. 이후, 용어 클러스터링결과를 이용하여 단일문서의 키워드를 추출하기 위해 단순빈도와 상대빈도의 조합을 통해 다양한 키워드 추출 공식을 도출, 적용한 결과, 단락빈도(pf)와 단어빈도$\times$역단락빈도($tf{\times}ipf$) 조건에서 가장 우수한 결과를 나타냈다. 이 결과를 통해, 본 연구에서 제안한 알고리즘은 좋은 키워드가 가져야 할 두 가지 조건인 주제성과 고른 빈도분포라는 측면에서 단일문서를 대상으로 효과적으로 키워드를 추출할 수 있음을 확인하였다.

NCS 능력단위 요소와 기존 교육과정 간 갭 분석을 위한 평가모델 (Evaluation Model for Gab Analysis Between NCS Competence Unit Element and Traditional Curriculum)

  • 김대경;김창복
    • 한국항행학회논문지
    • /
    • 제19권4호
    • /
    • pp.338-344
    • /
    • 2015
  • 국가 직무능력 표준 (NCS; national competency standards)은 직무를 수행하기 위해 요구되는 능력에 대한 체계화 및 표준화이다. NCS는 특정 직무능력인 능력단위 요소로 구체화하고 표준화하여 학습모듈을 개발한다. 기존 교육과정은 NCS 능력단위 요소를 교육 훈련에 활용하기 위해서 갭 분석 (gab analysis)이 필수적이다. 기존에 갭 분석은 전문가가 주관적으로 평가하였다. 전문가에 의한 갭 분석은 심리적 요소에 의해 주관적 결정, 정확성 결여, 시간 및 공간적 비효율성 문제가 제기되었다. 본 논문은 주관적 평가의 문제 해결을 위해 자동화 평가모델을 제시하였다. 본 논문은 기존 교육과정과 능력단위 요소 간 갭 분석을 위해, 색인어 추출, 단어빈도수-역 빈도수 기반 특징 값 추출, 코사인 유사도 알고리즘을 이용하였다. 또한, 기존 교육과정과 NCS 능력단위요소 사이 유사도 매핑 테이블을 제시하였다. 본 논문의 평가모델은 구조적 특징이나 속도 면에서 개선된 알고리즘을 통해 보완해야 한다.

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

An Optimal Weighting Method in Supervised Learning of Linguistic Model for Text Classification

  • Mikawa, Kenta;Ishida, Takashi;Goto, Masayuki
    • Industrial Engineering and Management Systems
    • /
    • 제11권1호
    • /
    • pp.87-93
    • /
    • 2012
  • This paper discusses a new weighting method for text analyzing from the view point of supervised learning. The term frequency and inverse term frequency measure (tf-idf measure) is famous weighting method for information retrieval, and this method can be used for text analyzing either. However, it is an experimental weighting method for information retrieval whose effectiveness is not clarified from the theoretical viewpoints. Therefore, other effective weighting measure may be obtained for document classification problems. In this study, we propose the optimal weighting method for document classification problems from the view point of supervised learning. The proposed measure is more suitable for the text classification problem as used training data than the tf-idf measure. The effectiveness of our proposal is clarified by simulation experiments for the text classification problems of newspaper article and the customer review which is posted on the web site.

효율적인 문서 구성을 위한 TF-IDF 알고리즘 기반 문서 제안 시스템의 설계 (Design of Document Suggestion System based on TF-IDF Algorithm for Efficient Organization of Documentation)

  • 김영훈;박승민;조대수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.527-528
    • /
    • 2022
  • 빠르게 변하는 환경에 맞춰 평생 교육이 일반화되고 개인에게 요구되는 학습량은 많아지고 있으며 높아진 학습량에 맞게 학습 시간 단축과 효율적인 학습을 위한 학습 방법을 선택하는 것이 중요해지고 있다. 본 논문에서는 학습 정리를 위해 작성한 문서를 분석하여 해당 문서와 관련된 문서를 제안하고 본 문서와 엮어 학습을 위한 문서 묶음을 만들 수 있는 시스템을 제안한다. 문서의 유사도, 중요도를 구할 수 있는 TF-IDF를 이용하여 문서를 분석해 키워드를 추출한 다음 그와 관련된 문서를 제안하고 문서 묶음을 만들어 조회할 수 있도록 한다. 이 시스템은 학습 정리 시 관련 문서를 함께 볼 수 있도록 하고, 필요하다면 묶음으로 만들어 효과적인 학습을 위한 도구로 이용할 수 있다.

  • PDF

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

공유경제 기반의 고객리뷰를 이용한 토픽모델링 분석: 공유주차를 중심으로 (A Study on Analysis of Topic Modeling using Customer Reviews based on Sharing Economy: Focusing on Sharing Parking)

  • 이태원
    • 한국산업정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.39-51
    • /
    • 2020
  • 본 연구에서는 공유경제의 다양한 비즈니스 모델 중 공유주차로 범위를 제한하고, 이와 관련된 리뷰를 수집한 후 텍스트마이닝 분석을 통해 공유주차가 갖고 있는 사회적 이슈와 소비자 인식에 대해 살펴보고자 한다. 본 실험에서는 TFIDF (Term frequency inverse document frequency) 기법과 LDA (Latent dirichlet allocation) 기법을 이용하여 키워드별 토픽을 추출하여 분석한 결과 소비자들이 필요로 하거나 원하는 정보들을 파악할 수 있었으며, 토픽으로 분류한 결과 지자체 협약, 주차공간협소, 주차문화개선, 시민참여 등 시민들의 불만과 시민의식이 공유주차 서비스를 시행하는데 중요한 역할을 하고 있다는 것을 확인할 수 있었다. 본 연구는 정성적 연구, 기업 및 지역의 사례를 이용하여 기존의 탐색적 연구를 수행한 선행 연구와는 차별화된 연구로 학술적 기여도가 높다고 할 수 있다. LDA 분석을 본 연구에 활용하여 나타난 결과를 바탕으로 지역경제 활성화를 위한 공유경제 정책 수립에 응용하거나 활용할 수 있다는 실무적 기여도가 있다.

인터넷 상점에서의 내용기반 추천을 위한 상품 및 고객의 자질 추출 성능 비교 (Comparison of Product and Customer Feature Selection Methods for Content-based Recommendation in Internet Storefronts)

  • 안형준;김종우
    • 정보처리학회논문지D
    • /
    • 제13D권2호
    • /
    • pp.279-286
    • /
    • 2006
  • 인터넷 쇼핑몰에서의 상품 추천을 위해 널리 사용되는 방식 중 한 가지는 상품의 특성과 고객의 특성을 비교하여 고객에 맞는 상품을 추천하는 방식이다. 이 방식은 상품이나 고객의 특성을 표현하는 자질(Feature)의 개수가 많을수록 그 중에 어떤 자질을 선택해야 더 좋은 추천 성과를 가져올 수 있는지 파악해 내는 것이 추천의 효과 및 효율성 측면에서 중요하지만 아직까지 충분히 연구되지 않은 실정이다. 본 연구에서는 인터넷 서점에서의 가상 구매실험을 바탕으로 사용자가 구매한 책 들에서 사용자를 잘 나타낼 수 있는 자질을 선택하는 방식에 대해서 벡터 스페이스 모형, TFIDF(Term Frequency-Inverse Document Frequency), Mutual Information, SVD(Singular Value Decomposition) 방식 등을 활용하여 실험하고 그 결과를 비교해본다. 실험 결과 SVD를 응용한 자질 추출 기법이 가장 좋은 성능을 나타내었다.

A Study on Change in Perception of Community Service and Demand Prediction based on Big Data

  • Chun-Ok, Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.230-237
    • /
    • 2022
  • The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.