최근 통계적인 기법을 이용하여 대량으로 생산되고 있는 텍스트 데이터를 통해 다양한 인사이트 발굴을 하기 위한 연구가 활발히 진행되고 있다. 본 연구는 경찰청에서 생산하는 텍스트 데이터를 통해 연도별 경찰청의 업무 트렌드를 파악하고, 각 지방청별로 생산되는 문서에서 주요 키워드를 파악하여 지방청 간의 업무 특성을 비교하고자 하였다. 의미 있는 결론을 도출하기 위해 각 자료 특성에 맞는 전처리 과정을 시행하고 문서별 단어 빈도수를 계산하였다. 문서에 나타난 키워드의 단순 출현 빈도로는 해당 키워드가 문서에서 갖는 중요도를 설명하기 힘들기 때문에 단어-역문서 가중치를 이용하여 각 단어에 대한 빈도수를 새롭게 계산하였고 단어의 문서별 및 연도별 빈도 비교를 위해 L2 정규화 기법을 이용하였다. 이러한 분석은 향후 경찰청 업무 개선 정책에 새롭게 활용될 수 있는 기초 자료로 사용될 수 있으며, 경찰청 업무 효율성 향상 및 청내 업무 개선 수요 파악을 위한 방법으로 활용될 수 있다.
이 연구에서는 용어 클러스터링을 이용하여 단일문서의 키워드를 추출하는 알고리즘을 제안하고자 한다. 단락단위로 분할한 단일문서를 대상으로 1차 유사도와 2차 분포 유사도를 산출하여 용어 클러스터링을 수행한 결과, 50단어 단락에서 2차 분포 유사도를 적용했을 때 가장 우수한 성능을 나타냈다. 이후, 용어 클러스터링결과를 이용하여 단일문서의 키워드를 추출하기 위해 단순빈도와 상대빈도의 조합을 통해 다양한 키워드 추출 공식을 도출, 적용한 결과, 단락빈도(pf)와 단어빈도$\times$역단락빈도($tf{\times}ipf$) 조건에서 가장 우수한 결과를 나타냈다. 이 결과를 통해, 본 연구에서 제안한 알고리즘은 좋은 키워드가 가져야 할 두 가지 조건인 주제성과 고른 빈도분포라는 측면에서 단일문서를 대상으로 효과적으로 키워드를 추출할 수 있음을 확인하였다.
국가 직무능력 표준 (NCS; national competency standards)은 직무를 수행하기 위해 요구되는 능력에 대한 체계화 및 표준화이다. NCS는 특정 직무능력인 능력단위 요소로 구체화하고 표준화하여 학습모듈을 개발한다. 기존 교육과정은 NCS 능력단위 요소를 교육 훈련에 활용하기 위해서 갭 분석 (gab analysis)이 필수적이다. 기존에 갭 분석은 전문가가 주관적으로 평가하였다. 전문가에 의한 갭 분석은 심리적 요소에 의해 주관적 결정, 정확성 결여, 시간 및 공간적 비효율성 문제가 제기되었다. 본 논문은 주관적 평가의 문제 해결을 위해 자동화 평가모델을 제시하였다. 본 논문은 기존 교육과정과 능력단위 요소 간 갭 분석을 위해, 색인어 추출, 단어빈도수-역 빈도수 기반 특징 값 추출, 코사인 유사도 알고리즘을 이용하였다. 또한, 기존 교육과정과 NCS 능력단위요소 사이 유사도 매핑 테이블을 제시하였다. 본 논문의 평가모델은 구조적 특징이나 속도 면에서 개선된 알고리즘을 통해 보완해야 한다.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.59-66
/
2023
Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.
This paper discusses a new weighting method for text analyzing from the view point of supervised learning. The term frequency and inverse term frequency measure (tf-idf measure) is famous weighting method for information retrieval, and this method can be used for text analyzing either. However, it is an experimental weighting method for information retrieval whose effectiveness is not clarified from the theoretical viewpoints. Therefore, other effective weighting measure may be obtained for document classification problems. In this study, we propose the optimal weighting method for document classification problems from the view point of supervised learning. The proposed measure is more suitable for the text classification problem as used training data than the tf-idf measure. The effectiveness of our proposal is clarified by simulation experiments for the text classification problems of newspaper article and the customer review which is posted on the web site.
빠르게 변하는 환경에 맞춰 평생 교육이 일반화되고 개인에게 요구되는 학습량은 많아지고 있으며 높아진 학습량에 맞게 학습 시간 단축과 효율적인 학습을 위한 학습 방법을 선택하는 것이 중요해지고 있다. 본 논문에서는 학습 정리를 위해 작성한 문서를 분석하여 해당 문서와 관련된 문서를 제안하고 본 문서와 엮어 학습을 위한 문서 묶음을 만들 수 있는 시스템을 제안한다. 문서의 유사도, 중요도를 구할 수 있는 TF-IDF를 이용하여 문서를 분석해 키워드를 추출한 다음 그와 관련된 문서를 제안하고 문서 묶음을 만들어 조회할 수 있도록 한다. 이 시스템은 학습 정리 시 관련 문서를 함께 볼 수 있도록 하고, 필요하다면 묶음으로 만들어 효과적인 학습을 위한 도구로 이용할 수 있다.
빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.
본 연구에서는 공유경제의 다양한 비즈니스 모델 중 공유주차로 범위를 제한하고, 이와 관련된 리뷰를 수집한 후 텍스트마이닝 분석을 통해 공유주차가 갖고 있는 사회적 이슈와 소비자 인식에 대해 살펴보고자 한다. 본 실험에서는 TFIDF (Term frequency inverse document frequency) 기법과 LDA (Latent dirichlet allocation) 기법을 이용하여 키워드별 토픽을 추출하여 분석한 결과 소비자들이 필요로 하거나 원하는 정보들을 파악할 수 있었으며, 토픽으로 분류한 결과 지자체 협약, 주차공간협소, 주차문화개선, 시민참여 등 시민들의 불만과 시민의식이 공유주차 서비스를 시행하는데 중요한 역할을 하고 있다는 것을 확인할 수 있었다. 본 연구는 정성적 연구, 기업 및 지역의 사례를 이용하여 기존의 탐색적 연구를 수행한 선행 연구와는 차별화된 연구로 학술적 기여도가 높다고 할 수 있다. LDA 분석을 본 연구에 활용하여 나타난 결과를 바탕으로 지역경제 활성화를 위한 공유경제 정책 수립에 응용하거나 활용할 수 있다는 실무적 기여도가 있다.
인터넷 쇼핑몰에서의 상품 추천을 위해 널리 사용되는 방식 중 한 가지는 상품의 특성과 고객의 특성을 비교하여 고객에 맞는 상품을 추천하는 방식이다. 이 방식은 상품이나 고객의 특성을 표현하는 자질(Feature)의 개수가 많을수록 그 중에 어떤 자질을 선택해야 더 좋은 추천 성과를 가져올 수 있는지 파악해 내는 것이 추천의 효과 및 효율성 측면에서 중요하지만 아직까지 충분히 연구되지 않은 실정이다. 본 연구에서는 인터넷 서점에서의 가상 구매실험을 바탕으로 사용자가 구매한 책 들에서 사용자를 잘 나타낼 수 있는 자질을 선택하는 방식에 대해서 벡터 스페이스 모형, TFIDF(Term Frequency-Inverse Document Frequency), Mutual Information, SVD(Singular Value Decomposition) 방식 등을 활용하여 실험하고 그 결과를 비교해본다. 실험 결과 SVD를 응용한 자질 추출 기법이 가장 좋은 성능을 나타내었다.
International Journal of Advanced Culture Technology
/
제10권4호
/
pp.230-237
/
2022
The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.