Background: This study used text mining techniques to determine public perceptions of dental fear, extracted keywords related to dental fear, identified the connection between the keywords, and categorized and visualized perceptions related to dental fear. Methods: Keywords in texts posted on Internet portal sites (NAVER and Google) between 1 January, 2000, and 31 December, 2022, were collected. The four stages of analysis were used to explore the keywords: frequency analysis, term frequency-inverse document frequency (TF-IDF), centrality analysis and co-occurrence analysis, and convergent correlations. Results: In the top ten keywords based on frequency analysis, the most frequently used keyword was 'treatment,' followed by 'fear,' 'dental implant,' 'conscious sedation,' 'pain,' 'dental fear,' 'comfort,' 'taking medication,' 'experience,' and 'tooth.' In the TF-IDF analysis, the top three keywords were dental implant, conscious sedation, and dental fear. The co-occurrence analysis was used to explore keywords that appear together and showed that 'fear and treatment' and 'treatment and pain' appeared the most frequently. Conclusion: Texts collected via unstructured big data were analyzed to identify general perceptions related to dental fear, and this study is valuable as a source data for understanding public perceptions of dental fear by grouping associated keywords. The results of this study will be helpful to understand dental fear and used as factors affecting oral health in the future.
본 연구에서는 레코드필드 선택이 대규모 서지 데이터베이스 탐색시 미치는 검색 성능에 대하여 관찰하였다. 실험의 구성 요소는 크게 (1) 대규모 상업용 데이터베이스 INSPEC. (2) 관련된 레코드들 (target sets이라고 정의함). (3) 4개의 키워드가 한 세트로 이루어진 4개의 서로 다른 형태의 질의어들 (CT_TF, CT_IDF, UT_TF, UT_IDF), (4) 최적의 질의를 위한 알고리즘, (5) 가능한 모든 경우의 탐색식을 생성해내는 블리언 탐색식 생성기, 그리고 (6) 실제 운영중인 웹 기반의 검색 시스템으로 이뤄졌다. 실험에서의 레코드 필드 선택은 (1) Abstract, (2) Descriptors, (3) Identifiers, (4) 'Subject'(Descriptors + Identifiers). (5) Title. (6) 'All fields'로 정의하여 독립변수로 채택하였다. 검색 성능은 재현율, 정도율을 모두 반영한 Heine의 D측정에 의하여 평가 되었다. 본 연구에서 얻은 주된 결과로는 (1) 필드선택은 검색성능에 중요한 영향을 미치며, (2) 각 검색 성능에서 보여준 순위는 질의어에 따라 민감한 결과를 보였고 (3) 제목(Title)필드 선택이 D측정에서 최적의 결과를 보였다.
소셜 정보망의 발달로 마케팅의 방법도 다양하게 변화되고 있다. 기존의 유명인, 경제적 지원 기반의 성공적인 마케팅방법론과 달리, 최근 인플루언서 기반 유튜브 마케팅이 큰 대세를 이루고 있다. 본 논문 에서는 처음으로 유튜브 양적 정보 및 댓글분석 기반 다각도 질적 분석을 활용하여 54개 이상의 유튜브 채널에서 인플루언서 특징을 추출하고 대표적인 주제들을 모델링하여 개인 맞춤형 영상 만족도 극대화는 물론 기업체가 새로운 아이템을 마케팅 할 때 기존의 인플루언서 특징을 참고하여 새로운 아이템의 영상을 제작하고 배포함으로써 성공적인 홍보 효과를 누릴 수 있도록 보조 수단 제공을 목적으로 한다. 유튜브 채널 별 다양한 영상의 모든 댓글을 각 문서로 가정하고 TF-IDF 및 LDA알고리즘을 적용하여 성능 극대화 향상을 보였다.
본 연구의 목적은 노인 헬스케어앱 시장의 변화 추이를 텍스트 마이닝 분석을 통해 살펴보고 노인 헬스케어앱 활성화를 위한 기초자료를 제시하고자 한다. 데이터 수집은 네이버, 다음, 블로그 웹, 까페를 대상으로 이루어졌으며, 연구방법은 빅데이터 분석 프로그램인 텍스톰(Textom)과 Ucinet6를 이용하여 텍스트마이닝, TF-IDF(Term frequency-inverse document frequency), 감성분석, 의미연결망분석을 실시하였다. 워드 클라우드를 실시한 결과 빈도 순으로 현장교육, 헬스케어, 전신재활운동기구, 서비스, 운동 등으로 나타났으며, TF-IDF 순위로는 현장교육, 헬스케어, 재활운동기구, 서비스, 건강 순으로 나타났다. 노인 스포츠 어플리케이션에 대한 감성분석을 실시한 결과 긍정비율로 81.3%, 부정비율이 18.7%로 나타났으며, 헬스케어앱 정보격차 해소, 융복합 헬스케어기술, 확산매체, 노인헬스케어앱 산업, 사회적 배경, 콘텐츠로 총 6개의 범주가 최종적으로 도출되었다. 결론적으로 노인 헬스케어앱이 노인들에게 수용 및 활용되기 위해 확산 인프라가 잘 갖추어져 있어야 하며, 융복합 기술의 적극적인 도입과 노인도 쉽게 사용할 수 있는 콘텐츠 개발을 통해 헬스케어 앱의 효과를 극대화하여야 한다.
화학물질 사고는 신속한 대응 및 복구가 어렵고, 환경오염과 인명피해가 동반된다는 점에서 매뉴얼의 중요성이 점차 주목받고 있으며, OECD에서는 화학사고 예방, 대비 및 대응을 위한 OECD 지침서(이하 OECD 지침서)를 2023년 6월 개정하였다. 또한, 기존 연구에서는 화학사고에 대한 인식 제고를 통해 법규, 규정, 매뉴얼 등 시스템적 대응이 필요하다는 점을 강조하고 있으나. 매뉴얼에 대한 정보속성 비교연구는 찾아보기 힘들었다. 이에, 본 연구는 기존 OECD 지침서(2판)와 개정된 OECD 지침서(3판)을 비교분석하여 OECD 지침서별 정보속성을 파악하고 시사점을 발굴하는 것을 목표로 하였다. 세부적으로는 어떤 단어가 중요해졌는지 파악하기 위해 TF-IDF(Term Frequency-Inverse Document Frequency) 분석을 적용하였으며, 유사하게 사용한 단어와 차별성있게 사용한 단어를 파악하기 위해 Word2Vec을 적용하였다. 최종적으로는 2X2 매트릭스를 제안하고, 각 사분면에 어떤 단어들이 있는지를 도출하여 OECD 지침서별 정보속성을 심층적으로 비교하였다. 본 연구는 연구자들이 정보속성을 파악하는데 도움이 되는 프레임워크를 제공하고자 하였으며, 실무적으로는 국내 화학관련 정부부처 및 기업의 표준메뉴얼 개정에 참고할 수 있을 것으로 보인다.
이 연구는 빅데이터 마이닝에 기초하여 공시지가 민원에 대한 시공간적 특성을 분석하는 모델을 제시하는 데 목적이 있다. 특히 이 연구는 행정 민원이 제기되는 원인을 학술적 요인보다는 시공간적 측면에서 찾았고, 그러한 민원 발생의 경향을 시공간적으로 모니터링하는 모델을 제시하였다. 2006년부터 2015년까지 인천광역시 중구의 공시지가에 대한 6,481개의 민원정보가 시간 및 공간적 특성을 고려해 수집되었고 분석을 위해 사용되었다. 텍스트 마이닝 기법을 이용해 주요 키워드의 빈도수를 도출했으며, 소셜 네트워크 분석을 통해 주요 키워드 간의 관계를 분석하였다. 키워드의 가중치와 연관되는 TF(term frequency)와 TF-IDF(term frequency-inverse document frequency)를 산출함으로써, 공시지가의 민원 발생에 대한 주요 키워드를 식별하였다. 마지막으로 Getis-Ord의 $Gi^*$의 통계량에 기초한 핫스팟 분석을 통해 공시지가 민원의 시공간적 특성을 분석하였다. 연구 결과, 공시지가 민원의 특성은 시공간적으로 연계된 군집 형태를 형성하면서 변화하고 있음을 알 수 있었다. 텍스트 마이닝과 소셜 네트워크 분석 방법을 이용하여 자연어 기반의 공시지가 민원에 대한 발생 원인을 정량적으로 규명할 수 있음을 알 수 있었으며, 키워드 가중치인 단어 빈도(TF) 및 단어 빈도와 역문서 빈도의 조합값(TF-IDF)의 상대적인 차이가 있어 시공간적인 민원 특성을 분석하기 위한 주요 설명변수로 활용될 수 있음을 알 수 있었다.
Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
ETRI Journal
/
제43권1호
/
pp.95-108
/
2021
Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권12호
/
pp.4706-4724
/
2020
With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.
This study divided articles into two time periods, from 2012 to 2022, with the aim of using big data analysis to look at patterns in the ecosystem of fashion start-ups. The research method extracted top keywords based on TF(Term Frequency) and TF-IDF(Term Frequency-Inverse Document Frequency), analyzed the network, and derived centrality values. As a result of comparing the first and second fashion startup ecosystems, elements of policy, support, market, finance, and human capital were derived in the first period. In addition, in the second period, elements of policy, support, market, finance, and culture were derived. In the first period, the fashion startup ecosystem focused on fostering new designer startups by emphasizing support, finance, and human capital factors and focusing on policies. Meanwhile, in the second period, online-based fashion platform startups and fashion tech startups appeared with the support of digital transformation and fulfillment services triggered by COVID-19(Corona Virus Disease 19), private finances were emphasized, and cultural factors were derived along with success stories of fashion startups. This study is meaningful in that it helps in developing strategies for fashion startups to grow into sustainable companies.
악성코드를 탐지하는 기법 중 동적 분석데이터와 같은 시계열 데이터는 프로그램마다 호출되는 API의 수가 모두 다르다. 하지만 딥러닝 모델을 통해 분석할 때는 모델의 입력이 되는 데이터의 크기가 모두 같아야 한다. 이에 본 논문은 TF-IDF(Term Frequency-Inverse Document Frequency)와 슬라이딩 윈도우 기법을 이용해 프로그램의 동적 특성을 유지하면서 데이터의 길이를 일정하게 만들 수 있는 전처리 기법과 LSTM(Long Short-Term Memory) 모델을 통해 정확도(Accuracy) 95.89%, 재현율(Recall) 97.08%, 정밀도(Precision) 95.9%, F1-score 96.48%를 달성했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.