• 제목/요약/키워드: Tensorflow

검색결과 116건 처리시간 0.036초

3축 가속도 데이터를 이용한 장단기 메모리의 노드수에 따른 낙상감지 시스템 연구 (Study of Fall Detection System According to Number of Nodes of Hidden-Layer in Long Short-Term Memory Using 3-axis Acceleration Data)

  • 정승수;김남호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.516-518
    • /
    • 2022
  • 본 논문에서는 낙상상태를 감지할 수 있는 장단기 메모리(Long Short-Term Memory)를 이용한 낙상감지 시스템에서 은닉층 노드 수 변경에 따른 영향을 소개한다. 3축 가속도 센서를 이용하여 x, y, z축 데이터를 중력 방향과 이루는 각도를 나타내는 파라미터 theta(θ)를 이용하여 훈련을 진행한다. 학습에서는 validation이 진행되어 8:2의 비율로 훈련 데이터와 테스트 데이터로 나뉘며, 효율성을 높이기 위해 은닉층의 노드 수를 변화하며 훈련을 진행한다. 노드 수가 128일 때 Accuracy 99.82%, Specificity 99.58%, Sensitivity 100%로 가장 좋은 정확도를 나타내었다.

  • PDF

다중 카메라 환경에서의 안면인식 기반의 영유아 활동 사진 자동 생성 시스템 (A system for automatically generating activity photos of infants based on facial recognition in a multi-camera environment)

  • 이정석;이규호;김건희;최창훈;박경로;손호준;유홍석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.481-483
    • /
    • 2023
  • 본 논문에서는 다중 카메라환경에서의 안면인식 기반 영유아 활동 사진 자동 생성 시스템을 개발했다. 개발한 시스템은 어린이집에서 알림장 작성을 위한 촬영하는 동안 보육에 부주의하여 안전사고가 발생하는 것을 방지 할 수 있다. 시스템은 이동식 수집기와 분류 서버로 나뉘어 작동하게 된다. 이동식 수집기는 Raspberry Pi를 이용하였고 초당 1장 내외의 사진을 촬영하여 SAMBA를 사용 공유폴더에 저장한다. 분류 서버에서는 YOLOv5를 사용해 안면을 인식해 분류한다. OpenCV와 TensorFlow-Keras를 통해 분류된 사진에서의 표정을 파악하여 부모에게 전송할 웃는사진만을 분류하여 남겨둔다. 이외의 사진은 /dev/null로 이동하여 삭제된다.

  • PDF

인공지능 기반의 TensorFlow 그래픽 사용자 인터페이스 개발에 관한 연구 (Study on Development of Graphic User Interface for TensorFlow Based on Artificial Intelligence)

  • 송상근;강성홍;최연희;심은경;이정욱;박종호;정영인;최병관
    • 디지털융복합연구
    • /
    • 제16권5호
    • /
    • pp.221-229
    • /
    • 2018
  • 기계 학습 및 인공지능은 제 4차 산업혁명의 핵심 기술이다. 하지만 프로그래밍 능력을 요구하는 기계 학습 플랫폼의 특성 상 일반 사용자들의 접근이 힘들기 때문에 인공지능이나 기계학습의 대중화는 제한을 받고 있다. 본 연구에서는 그래픽 사용자 인터페이스(Graphic User Interface, GUI)를 도입하여 이러한 한계를 극복하고 인공지능 활용에 대한 일반인의 접근성을 향상시키고자 하였다. 기본 기계 학습 플랫폼으로는 Tensorflow를 채택하였고 GUI는 마이크로 소프트 사의 .Net 환경을 활용하여 작성하였다. 새로운 사용자 인터페이스를 이용하면 일반 사용자도 파이썬 프로그래밍에 대한 부담없이 직관적으로 데이터를 관리하고, 알고리즘을 적용하고, 기계 학습을 실행할 수 있다. 우리는 이 개발이 다양한 분야에서의 인공지능 개발에 기초가 되는 자료로 활용되었으면 한다.

기계학습을 활용한 대학생 학습결과 예측 연구 (A Study on the Prediction of Learning Results Using Machine Learning)

  • 김연희;임수진
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.695-704
    • /
    • 2020
  • 최근 교육분야에 IT의 활용이 증가하고 이를 통한 학습결과 예측에 대한 연구가 진행되고 있다. 본 연구에서는 학습분석을 참고하여 학습결과에 영향을 미칠 수 있는 학습활동 데이터를 수집하였다. 조사에 참여한 학생은 1062명으로, 조사는 2018년 10월부터 12월까지 충청남도 소재의 4년제 종합 사립대학인 A대학에서 진행되었다. 먼저 기계 학습의 예측 변인들의 타당성 확보를 위하여 학습결과에 대한 개인·학업·행동요인으로 모형을 구성하여 위계적 회귀 분석을 실시하였다. 위계적 회귀 분석의 모형이 유의하였고, 단계별로 설명력(R2)이 증가하는 것으로 나타나 투입된 변수들이 적절한 것으로 나타났다. 또한 기계학습의 선형 회귀분석방법을 통해 투입한 학습활동 변수가 학습 결과를 얼마나 예측할 수 있는지 확인하였으며, 오차율은 약 8.4%로 수집되었다.

모돈 생체 반응 신호의 주파수 영역 Feature selection을 통한 DNN 모델링 연구 (Research on DNN Modeling using Feature Selection on Frequency Domain for Vital Reaction of Breeding Pig)

  • 조진호;오종우;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.166-166
    • /
    • 2017
  • 모돈의 건강 상태를 정량 지수화 하기 위한 연구를 수행 중이다. 지제이상, 섭식 불량, 수면 패턴 등의 운동 특성 분석을 위하여 복수의 초음파 센서를 이용하였다. 시계열 계측 신호를 분석하여 정량 지수화를 수행하는 과정에서 주파수 도메인 분석을 시도하였다. 이 과정에서 주파수 도메인의 분해능에 따른 편차 극복을 위한 비선형 모델링을 수행하였다. 또한 인접한 시계열 데이터 구간 간의 상관성 분석이 가능하면 대용량 데이터의 실시간 처리로 인한 지연 시간 극복 및 기대되는 예후에 대한 조기 진단이 가능할 것이다. 본 연구에서는 구글에서 제공하는 Tensorflow와 NVIDIA에서 제공하는 CUDA 엔진을 동시 적용한 심층 학습 시스템을 이용하였다. 전 처리를 위하여 주파수 분해능 (2분, 3분, 5분, 7분, 11분, 13분, 17분, 19분)에 따른 데이터 집합을 1단계로 두고, 상위 10 순위 안에 드는 파워 스펙트럼 밀도의 크기를 2단계로 하여, 총 2~10개의 입력 노드를 순차적으로 선정하였고, 동일한 방식으로 인접한 시계열의 파워 스펙터럼 밀도를 순위를 변화시켜 지정하였다. 대표적인 심층학습 모델인 Softmax regression with a multilayer convolutional network를 이용하여 Recursive feature selection 경우의 수를 $8{\times}9{\times}9$로 총 648 가지 선정하고, Epoch는 10,000회로 지정하였다. Calibration 모델링의 경우 Cost function이 10% 이하인 경우 해당 경우의 학습을 중단하였으며, 모델 간 상호 교차 검증을 수행하기 위하여 $_8C_2{\times}_8C_2{\times}_8C_2$ 경우의 수에 대한 Verification test를 수행하였다. Calibration 과정 상 모든 경우에 대하여 10% 이하의 Cost function 값을 보였으나, 검증 테스트 과정에서 모든 경우에 대하여 $r^2$ < 0.5 인 결정 계수 값이 나타났다. 단적으로 심층학습 모델의 과도한 적합(Over fitting) 방식의 한계를 보인 것이라 판단할 수 있다. 적합한 Feature selection 및 심층 학습 모델에 대한 지속적이고 추가적인 고려를 통해 과도적합을 해소함과 동시에 실효적이고 활용 가능한 Classification을 위한 입, 출력 노드 단의 전후 Indexing, Quantization에 대한 고려가 필요할 것이다. 이를 통해 모돈 생체 정보 정량화를 위한 지능형 현장 진단 기술 연구를 지속할 것이다.

  • PDF

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측 (Prediction of Asphalt Pavement Service Life using Deep Learning)

  • 최승현;도명식
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

k-익명화 알고리즘에서 기계학습 기반의 k값 예측 기법 실험 및 구현 (Experiment and Implementation of a Machine-Learning Based k-Value Prediction Scheme in a k-Anonymity Algorithm)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권1호
    • /
    • pp.9-16
    • /
    • 2020
  • 빅 데이터를 연구 목적으로 제3자에게 배포할 때 프라이버시 정보를 보호하기 위해서 k-익명화 기법이 널리 사용되어 왔다. k-익명화 기법을 적용할 때, 해결 해야할 어려운 문제 중의 하나는 최적의 k값을 결정하는 것이다. 현재는 대부분 전문가의 직관에 근거하여 수동으로 결정되고 있다. 이러한 방식은 익명화의 성능을 떨어뜨리고 시간과 비용을 많이 낭비하게 만든다. 이러한 문제점을 해결하기 위해서 기계학습 기반의 k값 결정방식을 제안한다. 본 논문에서는 제안된 아이디어를 실제로 적용한 구현 및 실험 내용에 대해서 서술 한다. 실험에서는 심층 신경망을 구현하여 훈련하고 테스트를 수행 하였다. 실험결과 훈련 에러는 전형적인 신경망에서 보여지는 패턴을 나타냈으며, 테스트 실험에서는 훈련에러에서 나타나는 패턴과는 다른 패턴을 보여주고 있다. 제안된 방식의 장점은 k값 결정시 시간과 비용을 줄일 수 있다는 장점이 있다.

TensorRT와 SSD를 이용한 실시간 얼굴 검출방법 (Real Time Face detection Method Using TensorRT and SSD)

  • 유혜빈;박명숙;김상훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권10호
    • /
    • pp.323-328
    • /
    • 2020
  • 최근에는 딥러닝 기술을 이용하여 물체 검출 및 인식에서 성능이 크게 향상되는 새로운 접근방법들이 빠르게 제안되고 있다. 객체, 특히 얼굴객체 검출에 관한 여러 기법(Faster R-CNN, R-CNN, YOLO, SSD 등) 중 SSD는 다른 기법들보다 정확도와 속도에서 우수하다. 동시에 여러 객체 검출 네트워크들(object detection network)도 쉽게 이용할 수 있다. 본 논문에서는 객체 검출 네트워크 중 Mobilenet v2 network를 이용하고 SSD와 결합한 모델을 훈련하고, TensorRT engine을 이용하여 기존의 성능보다 4배 이상의 속도로 객체를 검출하는 방법에 대해 제안하고 실험을 통해 성능을 검증한다. 제안한 방법의 성능 검증을 위한 응용으로 얼굴객체 검출기(facial object detector)를 만들어 다양한 상황에서 동작과 성능을 실험하였다.

흉부 방사선영상의 좌, 우 반전 발생 여부 컨벌루션 신경망 기반 정확도 평가 (An Accuracy Evaluation on Convolutional Neural Network Assessment of Orientation Reversal of Chest X-ray Image)

  • 이현우;오주영;이주영;이태수;박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권2호
    • /
    • pp.65-70
    • /
    • 2020
  • PA(postero-anterior) and AP(antero-posterior) chest projections are the most sought-after types of all kinds of projections. But if a radiological technologist puts wrong information about the position in the computer, the orientation of left and right side of an image would be reversed. In order to solve this problem, we utilized CNN(convolutional neural network) which has recently utilized a lot for studies of medical imaging technology and rule-based system. 70% of 111,622 chest images were used for training, 20% of them were used for testing and 10% of them were used for validation set in the CNN experiment. The same amount of images which were used for testing in the CNN experiment were used in rule-based system. Python 3.7 version and Tensorflow r1.14 were utilized for data environment. As a result, rule-based system had 66% accuracy on evaluating whether the orientation reversal on chest x-ray image. But the CNN had 97.9% accuracy on that. Being overcome limitations by CNN which had been shown on rule-based system and shown the high accuracy can be considered as a meaningful result. If some problems which can occur for tasks of the radiological technologist can be separated by utilizing CNN, It can contribute a lot to optimize workflow.