• Title/Summary/Keyword: Tension test

Search Result 1,614, Processing Time 0.03 seconds

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Hong, Sup;Kim, Hyun-Joe
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2005
  • A series of forced oscillation tests on a model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depths to gather basic data for a 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring tests are important for overcoming the limitation of water depth that existed in previous model tests. The resultant tension RAO provides a good possibility of approximation of dynamic tension by equivalent weight adjustment for different water depths. Because the hybrid mooring test is an adequate combination of model test and simulation, an accurate simulation model for the mooring system is essential. The simulation results show good agreement with model test results.

Evaluation of Concrete Strength Effects on Tension Stiffening of CEB-FIP Model Code (콘크리트강도에 따른 CEB-FIP Model Code의 인장강성 평가)

  • Yang, Jun-Ho;Yum, Hwan-Seok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.635-640
    • /
    • 2000
  • This paper describes an experimental investigation on the influence of concrete strength on tension stiffening behavior. Total 6 direct tension specimens were tested with variation of concrete strengths such as 260, 620, and 820kgf/$\textrm{cm}^2$. These test results were compared with tension stiffening models of CEB-FIP Model Code. It was appeared that, as concrete strength was increasing, CEB-FIP models estimated much more tension stiffening than these test results. As the result, it would be said that the influence of concrete strength on tension stiffening was not properly taken account for in CEB-FIP model.

  • PDF

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas;Kupliauskas, Rimantas;Rimkus, Arvydas;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.345-358
    • /
    • 2018
  • Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.

Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation

  • Liu, Yongjian;Xiong, Zhihua;Feng, Yuncheng;Jiang, Lei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.455-465
    • /
    • 2017
  • This paper presents a series of ultimate and fatigue experimental investigation on concrete-filled rectangular hollow section (CRHS) X joints with Perfobond Leister rib (PBR) under tension. A total of 15 specimens were fabricated, in which 12 specimens were tested under ultimate tension and 3 specimens were investigated in fatigue test. Different parameters including PBR stiffening, brace-to-chord ratio (${\beta}$) and inclined angle (${\theta}$) were considered in the test. Each joint was tested to failure under tension load. Obtained from test result, PBR was found to improve the tension strength and fatigue durability of CRHS joint substantially. Concrete dowel consisted by PBR and concrete inside the chord stiffened the joint, which leaded to a combination failure mode of punching shear and chord plastification of CRHS joint under tension. Finite element analysis validated the compound failure mode. Stress concentration on typical spot of CRHS joint was mitigated by PBR which was observed from fatigue test. Initial fatigue crack presented in CRHS joint with PBR also differentiated with the counterpart without PBR.

Failure Behavior and Tension Stiffening of RC Tension Members (철근콘크리트 인장부재의 인장강성 및 파괴거동에 관한 연구)

  • 박제선;이봉학;윤경구;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.737-742
    • /
    • 1998
  • The tension stiffening effect is defined as the increase in stiffness in reinforced concrete member due to the stiffness provided by concrete between cracks. If this is disregarded in analysis of reinforced concrete members, especially at the level of service loads, member stiffnesses may be underestimated considerably. This paper presents on the failure behavior and tension stiffening of RC tension test with main variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship by ACI code and the proposed by Collins & Mitchell. In summary, the effect of tension stiffening decrease rapidly as the rebar diameter increase, rebar strength increase, and concrete strength increase. The effect of tension stiffening on RC member is the biggest near the behavior of concrete cracking and decrease as the load close to the breaking point. Thus, the tension stiffening should be considered for the precise analysis near the load of concrete cracking.

  • PDF

Tension Stiffening Effect for Reinforced Concrete Members (철근 콘크리트 부재의 인장강성 효과에 관한 연구)

  • 이봉학;윤경구;홍창우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.83-93
    • /
    • 1999
  • This paper presents tension stiffening effect of Reinforced concrete members obtained from experimental results on direct tension and bending. From the direct tension test program, crack patterns were investigated with tension softening behaviors of concrete. Tension stiffening effects and losses of strain energy were, also, analyzed from the load-deflection curve with the main experimental variables such as concrete strength, yielding stress and reinforcement ratio of rebar. Tension stiffening effect of RC members increase linearly until the first crack initiate, decrease inversely with number of cracks, and then decrease rapidly when splitting cracks are happened. The tension stiffening effect is shown to be more important at the member of lower reinforcement than that of higher. Therefore, it necessitates to consider the tension stiffening effects at a nonlinear analysis. From the above analysis, a tension stiffening model of concrete is proposed and verified by applying it to bending members. From the numerical analysis by finite element approach, it is shown that the proposed model evaluates a little higher in analyzing at nonlinear region of high strength concrete, but, perform satisfactorily in general.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Direct Tensile Test of GFRP Bar Reinforced Concrete Prisms

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.323-326
    • /
    • 2005
  • Uniaxial tension test of Glass Fiber Reinforced Polymer (GFRP) bar reinforced concrete prisms was performed. The objective was to investigate the adequate cover thickness of the GFRP rebars. The tension stiffening effect of GFRP bar reinforced concrete was also studied. The test variables included rebar types (conventional steel rebar and two different GFRP rebars) and cover thicknesses (five different cover thicknesses ranging between 1-3db). Normal strength concrete was used. Cracking patterns on concrete surface and cracking loads were careful1y observed during the direct tensile test. The test results indicated that the adequate cover thickness of the GFRP rebars may even be larger than that of the steel rebars and that the cover thickness of 2db commonly specified for the GFRP rebars may not be large enough. The tension stiffening effect of the GFRP rebars was also quantified and documented from the test results.

  • PDF

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF