• 제목/요약/키워드: Tension lamination

검색결과 18건 처리시간 0.016초

인장(引張) 및 압축부재(壓縮部材)와 적층수(積層數)가 플라타너스 집성재(集成材)의 휨성질(性質)에 미치는 영향(影響) (Effect of Tension, Compression Lamination and Number of Lamination on the Flexural Properties of Platanus occidentalis L. Laminated Beam)

  • 오세창;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제14권2호
    • /
    • pp.3-12
    • /
    • 1986
  • The aim of this study is to determine the flexural properties(Modulus of Rupture, Modulus of Elasticity) of Platanus occidentalis L. laminated beams fabricated with 1, 3, 5, 8, 15 lamination and Tension, Compression lamination. The results were as follows: 1. MOR increased with increasing number of lamination in 3, 5, 8, 15-beam and Tension lamination beam. MOR of Compression lamination beam was lower than that of 3-beam, MOR of vertical beam not having Tension or compression lamination was lower than that of horizontal beam, but MOR of vertical beam with tension or compression lamination was same or slightly higher than that of horizontal beam. 2. The allowable working stress showed the same tendency. This stress increased with increasing number of lamination. This value of Tension lamination beam was higher than that of compression lamination beam. 3. MOE of all laminated beams was higher than that of solid beam and Tension lamination beam was higher than that of 3-beam. MOE of Tension lamination beam was higher than that of Compression lamination beam. MOE of all vertical beam was higher than that of horizontal beam except for T-2, T-5, C-3. 4. Most beam failures appeared to begin in tension. These tension failures were classified into Splintering tension, Cross-grained tension, Simple tension, Brittle tension. All test beam failures could be classified into three categories. 1) Tension failure 2) Compression failure 3) Horizontal shear failure.

  • PDF

집성재의 강도적 성질 예측에 대한 핑거 조인트와 라미나의 강도의 영향 (Effects of Finger Joint and Strength of Lamination on the Estimation of Strength Properties of Glulam)

  • 김광철;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권1호
    • /
    • pp.8-17
    • /
    • 2000
  • 낙엽송을 이용하여 구조용 집성재를 제조하였다. 핑거 조인트나 라미나의 강도 등의 인자들이 집성재의 강도적 성질에 영향하는 바를 조사하였다. 집성재의 강도적 성질 예측을 위해 입력변수로 라미나의 MOE만을 사용하였을 때는 실측치와 예측치 사이의 차이가 라미나의 개수가 증가함에 따라 커졌는데 이것은 라미나의 성질의 변이가 집성재의 강도에 영향하는 바가 라미나의 개수 증가에 따라 누적되기 때문이다. 따라서, 집성재의 MOR을 예측하기 위해서는 좀더 신중한 접근법이 필요하였다. 입력변수의 영향을 비교하기 위하여 라미나의 MOE와 MOR을 동시에 입력변수로 사용하였다. 핑거접합을 실시한 라미나가 인장측에 배치되었을 때 집성재의 MOE는 라미나의 MOE 값에 상당한 변이가 존재하고 옹이에 대한 자료가 충분치 않아서 약간의 영향을 받았다. 핑거 접합을 실시한 라미나가 인장측에 배치되지 않았을 경우에는 인장측에 배치된 경우보다 더 정확한 예측이 가능하였다. 이러한 결과를 종합하면, 핑거 접합과 옹이를 동시에 고려하였을 경우 좀 더 정확한 집성재의 강도적 성질 예측이 가능할 것으로 판단된다.

  • PDF

Influence of brass laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

  • Bautista, Zhierwinjay M.;Shin, Hyung-Seop;Lee, Jae-Hun;Lee, Hunju;Moon, Seung-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.6-9
    • /
    • 2016
  • The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their $I_c$ behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of $I_c$ in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

Feasibility of Ultrasonic Log Sorting in Manufacturing Structural Lamination from Japanese Cedar Logs

  • Oh, Jung-Kwon;Yeo, Hwan-Myeong;Choi, In-Gyu;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.163-171
    • /
    • 2011
  • Because Japanese cedar shows lower mechanical performance, glued-laminated timber (glulam) can be a better way to utilize Japanese cedar for structural purpose. However, low yield of higher grade lamination from log makes it difficult to design structural glulam. This study was aimed to increase the yield of higher grade lamination and provide higher efficiency of manufacturing structural lamination by ultrasonic log sorting technology. Logs were sorted by an existing log grading rule regulated by Korea Forest Research Institute (KFRI). It was found that the KFRI log grading rule contributed to finding better logs in viewpoint of the volumetric yield and it can reduce the number of rejected lumber by visual grading. However, it could not identify better logs to produce higher-grade products. To find an appropriate log-sorting-method for structural products, log diameter and ultrasonic time of flight (TOF) for the log were considered as factors to affect mechanical performance of resulting products. However, it was found that influence of log diameter on mechanical performance of resulting products was very small. The TOF showed a possibility to sort logs by mechanical performance of resulting products even though a coefficient of correlation was not strong (R = 0.6). In a case study, the log selection based on the ultrasonic TOF of the log increased the yield of the outermost tension lamination (E8 or better grade, KS F 3021) from 2.6% to 12.5% and reduced LTE5 (lower than E5 grade) lamination from 43.6% to 10.3%, compared with the existing KFRI log grading rule.

Application of reflow soldering method for laminated high temperature superconductor tapes

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Shin, Hyung-Seop;Youm, Do-Jun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권2호
    • /
    • pp.9-12
    • /
    • 2010
  • A lamination system using reflow soldering was developed to enhance the mechanical properties of high temperature superconductor (HTS) tape. The laminated coated conductor tape was fabricated using the continuous lamination process. The mean, maximum, and minimum tensile loads in a T-peel test of the laminated coated conductor were 9.9 N, 12.5 N, and 7.6 N, respectively. The critical current ($I_c$) distributions of the non-laminated and laminated coated conductor were compared using anon-contact Hall probe method. The transport $I_c$ nearly matched the non-contact $I_c$; however, some degraded Ic regions were found on the length of 800 cm of laminated coated conductor. We confirmed that the cause of the partially degraded $I_c$ was due to an increase in line tension by (1) solidification induced by a change of composition that usually occurs in molten brass (Cu, Zn) in solder, or (2) non-homogeneity of the thickness of the coated conductor or metal tapes. We suggest that reflow soldering is a promising method for reinforced HTS tape if the controlling solder thickness and lamination guide are modified.

Performance evaluation of differently structured RCE-DR GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Diaz, Mark Angelo E.;Shin, Hyung-Seop;Jung, Ho-Sang;Lee, Jaehun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.13-17
    • /
    • 2022
  • The mechanical properties of REBCO coated conductor (CC) tapes under uniaxial tension are mainly determined by the thick layer Components like the substrate and the stabilizer. Depending on the applications of the CC tapes, it is also needed to externally reinforce thin metallic foils to one side or both sides of the CC tapes. This study investigated the effect of additional stabilizer layers or lamination on the electrical resistivity and electromechanical properties in RCE-DR processed GdBCO CC tapes with different structures. The strain/stress tolerance of Ic in differently processed 12 mm-wide REBCO CC tapes under uniaxial tension at 77 K and self-field could be determined by the loading-unloading scheme. As a result, Sn-Cu stabilized CC tape showed a significant decrease in mechanical properties due to its soft but thick stabilizing layer. However, similar electromechanical properties have been observed on both Sn-Cu and Sn-stabilized CC tapes, the Ic degradation behavior was independent of whether the CC tape has an external reinforcement or different stabilizing layers.

Measurement reliability of irreversible stress/strain limits in Sn-Cu double layer stabilized IBAD/RCE-DR processed GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Bautista, Zhierwinjay;Diaz, Mark Angelo;Shin, Hyung-Seop;Lee, Jae-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.36-40
    • /
    • 2018
  • In this study, the electromechanical properties in Sn-Cu double layer stabilized GdBCO coated conductor (CC) tapes with and without external lamination under uniaxial tension were examined at 77 K and self-field. Their irreversible stress and strain limits were determined using a loading-unloading scheme based on different critical current ($I_c$) recovery criteria. The repeated tests were performed and statistical estimation was done to check the reproducibility depending on the criterion adopted in evaluating the electromechanical properties. From the results, it showed that the Sn-Cu double-layer stabilized CC tapes have the higher irreversible stress limit, but lower irreversible strain limit as compared to brass laminated ones. Through the repeated tests, it can be found that a small scattering of irreversible limits existed in both CC tape samples. Finally, similar strain sensitivity of $I_c$ in both CC tapes was obtained.

SmBCO 고온 초전도 선재의 안정화재 특성 (A study on the properties of SmBCO coated conductors with stabilizer tape)

  • 김태형;오상수;김호섭;고락길;송규정;하홍수;이남진;박경채;하동우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.9-12
    • /
    • 2007
  • In this study. we searched for the mechanical and electrical properties of laminated coated conductors with stabilizer tape. Stabilizer tape plays a role for mechanical and electrical stability and environmental protection. Cu material stabilizer was laminated to Ag capping layer on SmBCO conductor layer. This architecture allows the wire to meet operational requirements including the stressless at cryogenic temperature and winding tension as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. First, we have experimentally studied mechanical bonding properties of the laminated Cu stabilizers on SmBCO coated conductors. We have laminated SmBCO coated conductors by continuous dipping soldering process, Second, we have investigated electrical properties of the SmBCO coated conductors with stabilizer lamination. We evaluated bonding properties, peeling strength and critical current for laminated SmBCO coated conductors with Cu stabilizers.

적층목질재(積層木質材)(Glulam)의 중립축(中立軸)과 강도적(强度的) 성질(性質)에 관한 연구(硏究) (Study on the Neutral Axis of Glulam and its Mechanical Properties)

  • 박헌
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권3호
    • /
    • pp.42-52
    • /
    • 1990
  • In this study, thick 24mm glulams were composed of thick. 3, 4, 6, 8mm Larch laminas to study that the theoretical analysis and the experimental analysis regarding the location of neutral axis of the glulams were compared, and to study on the effect of location of neutral axis on mechanical properties of glulam. The variation of location of neutral axis after proportional limit(or elastical limit) was studied to offer basic data to make the better composition method of glulam. The result obtained can be summarized as follows: 1. The theoretical neutral axis was 0.547 in solid wood, and also 0.547 in glulams because glulams were composed of only Larch laminas. 2. In solid wood, the deviation of the theoretical and the experimental neutral axis location was 0.1%, But in glulams, the deviation from-12.2% to + 7.8% showed nonuniform pattern but no large deviation. Because laminas was only of Larch and so the mechanical properties of laminas were monotonous. 3. The neutral axis exerted no influance on the elasticity of glulam, which meaned that the maximum shear strength in the neutral axis showed no influance on elasticity limit. 4. The only minutely lower elasticities of glulam than that of solid wood were shown. This was because of influance of glue lines of glulam on the elasticlties. 5. The failure type of glulam was wholly simple tension failure and the horizontal shear failure near neutral axis was not taken place, which was that glue line was complete in bonding and the strength of the lamina was not various but uniform. 6. The ratio of tension strain($^{\varepsilon}t$) I compression strain($^{\varepsilon}c$) initially showed uniform level After the elasticity limit. the ratio was increased with the flow of time and so the tension strain was more increased than compression strain. So this proved tension lamination technique, which is that the mechanical properties of glulam could be improved, if the lamina of more superior strength would he added on the bottom side of the glulam.

  • PDF

광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구 (A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors)

  • 김원석;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF