• Title/Summary/Keyword: Tension cracks

Search Result 247, Processing Time 0.024 seconds

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

An Experimental Study on the Bond Characteristics of Reinforced Concrete Structures (철근 콘크리트 부재의 부착특성에 관한 실험 연구)

  • 오병환;강영진;이성로;방기성
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.99-107
    • /
    • 1990
  • The transfer of forces across the interface by bond between concrete and steel is of fundamentul importance to many aspects of reinforced concrete behavior. Bond stress-slip relationships were studied using a symmetri¬cal tension test specimen. This type of test is intended to simulate conditions in the tension zone of a concrete beam between primary cracks and below the neutral axis. These relationships between local bond stress and local slip are found to be quite different at different locations along the bar. The bond behavior under cyclic lo¬ading is also studied in the present study, and the increase of bond slip and steel strains is clarified from those tests.

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Cracking Behavior of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 균열거동)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • This paper presents the experimental results concentrically reinforced concrete tension members and compares cracking behavior of amorphous steel fiber and normal steel fiber reinforced concrete members. Two kind of steel fibers were included as a major experimental parameter together with the six cover thickness to bar diameter ratio ($c/d_b$). The presence of amorphous steel fibers effectively controlled the splitting cracks initation and propagation. In the amorphous steel fiber reinforced specimens, no splitting cracks were observed that becomes higher with cover thickness to bar diameter ratio is 2.0. Crack spacing of the each specimens reinforced with amorphous steel fibers and normal steel fibers becomes larger with the increase in cover thickness, and also measured maximum and average crack spacing are significantly smaller than current design code provision. Based on the measured crack spacings, a relationships for predicting the crack spacing is proposed using the measured average crack spacing in amorphous steel fiber reinforced concrete tension members.

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions - (수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

  • PDF

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks (원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석)

  • Ahn, Jae-Seok;Kim, Young-Wook;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.411-418
    • /
    • 2012
  • In this study, behavior of unpatched and patched cylindrical shells with through-wall cracks has been estimated using numerical experiments, and patching effect of them has been investigated according to various patching parameters. To show credibility of numerical models considered, two ways such as h- and p-methods have been adopted. Also, domain integral method and virtual crack extension method have been considered to calculate energy release rates based on linear elastic fracture mechanics. For examples, the unpatched cylindrical shells with circumferential cracks under remote tension have firstly been analyzed to show the validity of finite element modeling with h-method or p-method, and then the results have been compared with literature values published. Next, the sensitive analysis of patch repaired problems in terms of thickness of patch and adhesive, shear modulus of adhesive, composite material type of patch, crack length, etc. has been carried out.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.