• Title/Summary/Keyword: Tension Distribution

Search Result 403, Processing Time 0.025 seconds

A dynamic response Analysis of Tension Leg Platforms in Waves (II) (인장계류식 해양구조물의 동적응답해석(II))

  • 구자삼;박찬후;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the orgin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Proposal of Parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life (I) (피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(I))

  • Kim, Sang-Tae;Jang, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.874-882
    • /
    • 2001
  • The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique.

Determination of displacement distributions in welded steel tension elements using digital image techniques

  • Sozen, Sahin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1103-1117
    • /
    • 2015
  • It is known that material properties, connection quality and manufacturing methods are among the important factors directly affecting the behavior of steel connections and hence steel structures. The possible performance differences between a fabricated connection and its computer model may cause critical design problems for steel structures. Achieving a reliable design depends, however, on how accurately the material properties and relevant constitutive models are considered to characterize the behavior of structures. Conventionally, the stress and strain fields in structural steel connections are calculated using the finite elements method with assumed material properties and constitutive models. Because the conventional strain gages allow the measurement of deformation only at one point and direction for specific time duration, it is not possible to determine the general characteristics of stress-strain distributions in connections after the laboratory performance tests. In this study, a new method is introduced to measure displacement distribution of simple steel welded connections under tension tests. The method is based on analyzing digital images of connection specimens taken periodically during the laboratory tension test. By using this method, displacement distribution of steel connections can be calculated with an acceptable precision for the tested connections. Calculated displacements based on the digital image correlation method are compared with those calculated using the finite elements method.

HARMONIC GAUSS MAP AND HOPF FIBRATIONS

  • Han, Dong-Soong;Lee, Eun-Hwi
    • The Pure and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • A Gauss map of m-dimensional distribution on a Riemannian manifold M is called a harmonic Gauss map if it is a harmonic map from the manifold into its Grassmann bundle $G_m$(TM) of m-dimensional tangent subspace. We calculate the tension field of the Gauss map of m-dimensional distribution and especially show that the Hopf fibrations on $S^{4n+3}$ are the harmonic Gauss map of 3-dimensional distribution.

  • PDF

Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods (수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정)

  • Park, Gyuryeong;An, Hyejin;Kim, Seon-ok;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

Evaluation of Tension of Stay Cable using MBM (Measurement-based Model) (계측기반모델에 의한 사장케이블의 장력 평가)

  • Nam, Sang-Jin;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • This study presents the recomposition of MBM (measurement-based model) using natural frequencies and modes from the usually measured data, and the evaluation of cable tension in service from the analysis results upon MBM of existing CSB (cable stayed bridge). The cable tension is shown to be different according to the position attached to cable and loading type. The measured cable tensions are not different distinctly according to position attached cable under dead and live loads, but larger than those under design loads. The distribution of cable tension calculated upon the MBM is similar to those of measured tension although the former is more than those of cable tension upon the design model. Considering to long-term behaviors of cable, therefore, the design of cable in CSB needs to apply the analysis results on MBM. For this purpose, future study needs lots of measured data and MBM is used to analyze the long-term behavior of cable in CSB.

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas;Kupliauskas, Rimantas;Rimkus, Arvydas;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.345-358
    • /
    • 2018
  • Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.

A Clinical Study of Tension Headache Patients using Depression & Anxiety Scales (우울(憂鬱), 불안(不安) 척도(尺度)를 이용(利用)한 긴장성(緊張性) 두통(頭痛) 환자(患者)의 임상고찰(臨床考察))

  • Jung, In-Chul;Lee, Sang-Ryong;Park, Ji-Un
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.2
    • /
    • pp.145-154
    • /
    • 2003
  • Objective : The aims of this study were to show the clinical state and to investigate depression and anxiety by BDI and STAI scale in tension headache patients. Method : The patient group was consisted of the 20 patients with Tension Headache who were treated in Department of Neuropsychiatry, Daejeon University Oriental Hospital from 3 March 2003 to 30 September 2003. The control group was consisted of the 20 patients on physical therapy with cerebaral vascular disorder in the Daejeon University Cheonan Oriental Hospital. The patient group was investigated by various characteristics, and compared with the control group by BDI and STAI scores. Result : 1. The ratio of female was higher, the 40 aged were higher frequence, in distribution of the period of the clinical history, short term within 1 week was the most.. 2. Tension headache was most frequent at whole portion, neck stiffness, shoulder pain, general body weakness were mainly coexited, and the prescription invigorating spleen supplementing qi and tonifying qi and blood. 3. The BDI score was higher in patient group, but there was no significant difference 4. The STAI score was higher in patient group, but there was no significant difference.

  • PDF

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Stress Analysis on Composite Cylindrical Shells with a Reinforced Cutout Subjected to Axial Load (보강 개구부가 있는 복합재료 원통셸의 축방향 하중에 따른 응력해석)

  • 이영신;류충현;김영완
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.211-214
    • /
    • 1999
  • The stress distribution around the cutout of composite cylindrical shells with a circular or elliptical reinforced cutout subjected to axial compression or tension is studied by asymptotic method. Analytical solutions used a Donnell type orthotropic shell theory are presented by the defined stress concentration factor and are compared to experimental results. The experiment used the universal testing machine (UTM), strain gage and fixtures designed/manufactured for axial tension test of a cylindrical shell is carried and the composite material used in the experiment is plain weave glass fiber reinforced plastic (GFRP).

  • PDF