• Title/Summary/Keyword: Tensiometer

Search Result 80, Processing Time 0.023 seconds

Development of a Digital Soil Tensiometer using Porous Ceramic Cups (다공 세라믹 컵을 이용한 디지털 토양수분 장력계 개발)

  • Jung, In-Kyu;Chang, Young-Chang;Kim, Ki-Bok;Kim, Yong-Il;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.448-454
    • /
    • 2007
  • This study was conducted to develop a 100 kPa soil tensiometer mainly consisted of a porous ceramic cup, water-holding tube, and a digital vacuum gauge, through theoretical design analysis and experimental performance evaluation. Major findings were as follows. 1. Theoretical analysis showed that air entry value of a porous media decreased as the maximum effective size of the pore increased, and the maximum diameter of the pores was $2.9\;{\mu}m$ for measuring up a 100 kPa of soil-water tension. 2. Property analysis of tensiometer porous cups supplied in Korean domestic market indicated that main components were $SiO_2$ and $Al_2O_3$ with a porosity range of $33.8{\sim}49.3%$. 3. The porous cup selected through sample fabrication and air-permeability tests showed weight ratios of 87% and 11% for $Al_2O_3$ and $SiO_2$. The analysis of SEM (scanning electron microscope) images showed that the sample was sintered at temperatures of about $1150^{\circ}C$, which consisted of pores with sizes of up to 25% of those for commercial porous cups. 4. The prototype soil tensiometer was fabricated using the developed porous cup and a digital vacuum gauge that could measure water tension with a pressure of 85 kPa in air tests. 5. In-soil tests of the prototype conducted during a period of 25-day drying showed that soil-water tension values measured with the prototype and commercial units were not significantly different, and soil-water characteristic curves could be established for different soils, confirming accuracy and stability of the prototype.

Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber (시설오이 지중관비시 자동관수센서의 적정 매설깊이)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Vegetables production in greenhouse are typically intensely managed with high inputs of fertilizers and irrigation water, which increases the risk of ground-water nitrate contamination. In 2010 and 2011, a study was conducted to determine the appropriate depth of soil moisture sensor for automatic irrigation control to use water and nitrogen efficiently under subsurface drip irrigation (SDI) systems. The irrigation line for SDI placed 30 cm below soil surface and tensiometer was used as soil moisture sensor. Three tensiometer treatments placed at 10 (SDI-T10), 20 (SDI-T20) and 30 cm (SDI-T30) depths below soil surface under SDI. These are also compared to SUR-T20 treatment where tensiometer placed at 20 cm below soil surface under surface drip irrigation (SUR) systems. The growth of cucumber was not statistically different between SUR and SDI without SDI-T30 treatment. Fruit yields (Mg/ha) were 57.0 and 56.9 (SDI-T10), 56.0 and 60.5 (SDI-T20), 40.9 and 41.2 (SDI-T30) and 56.6 and 54.3 (SUR-T20) for 2010 and 2011, respectively. Slightly higher total yield was observed in tensiometer placed 20 cm below the soil surface, although no significant differences were found between SDI-T10 and SDI-T20 under SDI treatments. In addition, nitrogen application rates and daily irrigation rates were lowest in SDI-T20 compared with other SDIs and SUR treatments. Nitrogen and daily irrigation application under SDI-T20 was lower than that under SUR-T20 by 6.0%. These findings suggested tensiometer 20 cm depth under SDI systems was best for cucumber production in greenhouse.

Development of an Automatic Irrigation Control System in Protected Horticulture (시설원예에 있어서 물관리 지동화 시스템 개발)

  • 김경수;이기명;장익주
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.61-71
    • /
    • 1992
  • This study is performed to develop an automatic irrigation control of system for effective water management in greenhouse. The automatic irrigation control system is composed of an IR-RED optical sensor in tensiometer and an One-chip micro controller. The following results are obtained : 1. A practical IR-RED optical sensor in tensiometer, which shows the starting point of irrigation, was developed. 2. The automatic irrigation system with the optical sensor and One-chip micro controller was developed and also designed to be able to combine with the control system for temperature, curtain opening, etc. 3. A multiple irrigation control system for several greenhouses were suggested. 4. The results of the system test with the driving program for automatic water management were excellent.

  • PDF

A Quantitative Assessment on a Tension of Securing Rope to evade Marine Accidents caused by Improper Cargo-Securing

  • Kim, Young-Du
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.297-302
    • /
    • 2015
  • To prevent cargo accidents by repeated loads, a continuous monitoring for securing rope or additional safety measures are needed, but most of prevention measures have been conducted only by operator's own experience not a quantitative assessment. Hence, the Load-Displacement curve and approximation formula of securing rope were drawn in this research for a quantitative assessment and simplified measurement on a tension of securing rope using a tensiometer. Moreover, a com parison was conducted between m easuring tension and calculated tension on securing rope with portable tensiometer, 'Load-Displacement' approximation formula. The calculated tension of securing rope is obtained 153.3kfg using the formula and that result has not much difference with initial tension 150.0kgf. Lastly, an analysis of the characteristics of various ropes was suggested to enhance the reliability about quantitative assessment of securing rope's tension through further research.

Fundamental Studies for the Automatic Control System in the Greenhouse Using Microcomputer(II) -A Development of a Controller for an Automatic Control System- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(II) -자동화 시스템의 종합제어기 개발-)

  • 김진현;김철수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.73-86
    • /
    • 1995
  • The automatic control system in the greenhouse have to be developed to the direction of considering various factors the variables such as condition of the cultivation and greenhouse, the properties and types of products. Therefore, it is more important to set up variables appropriately than the problems of automatic control system itself, and the automatic control system which satisfy these problems should be simplified in the aspect of operation. In addition, even the individual automations are not perfect yet, so more studies are required for the development of comprehensive automatic system in korea. This study was carried out to automatize environment control systems for greenhouse, especially from most intensive labor requiring parts such as watering, irrigating liquefied fertilizer, spraying chemicals, mixing and ventilation system, etc. The results are summarized as follows. 1. Control type tensiometer was expected to be desirable in the automation of watering system, therefore, a new tensiometer was designed and developed through this study. 2. The chemical spraying system developed through this study was found to be excellent in the aspect of operation. 3. When pulse type water discharge meter was used in the mixing of liquefied fertilizer and chemical solution, the error of mixing were range $\pm$0.1~0.15%. 4. The water level switch of electrod type used for controlling water level was found to be affective in both control performance and operation cost. 5. The water and level control system can be omitted if each tank size are standardized in accordance with greenhouse size, therefore, the installation cost might be significantly reduced. 6. The developed general controller was excellent in hardware parts, but still remained to be improved in software parts.

  • PDF

Concurrent Validity, Inter-Tester and Intra-Tester Reliability of Goniometric Measurement of Active Elbow Range of Motion Using 4 Different Types of Measuring Instruments (주관절 가동범위 측정법에 대한 동시타당도와 신뢰도)

  • Current, Marion E.;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 1995
  • The purpose of this study was to assess the concurrent validity and reliability of goniometric measurement of joint motion. Subjects were 40 healthy university students. Measurements were performed by 4 inexperienced physical therapy students. Four different instruments were used and three readings were taken with each instrument in random order making a total of 12 readings for flexion of the right elbow of each subject. Goniometers used were 1. universal 2. fluid-based goniometer/inclinometer 3. digital LCD goniometer 4. electronic goniometer/torsiometer. The results were as follows: Concurrent validity was highest (r= .94) with the universal and digital LCD tools. Interrater reliability (Pearson Product Moment Correlation) was good for each tool. Interrater reliability calculated by ICC(2,1) was highest (.96) with the tensiometer and lowest (.78) with the digital LCD goniometer. Intrarater reliability calculated by ICC was excellent (${\geq}.90$) for all instruments. These results show that concurrent validity, intrarater and interrater reliability are very good in the used of all four types of goniometers/inclinometer/tensiometer, even with inexperienced raters. These results confirm the almost universal reliance on hand held goniometers for joint measurement by physical therapists as being a reliable practice. Further research should be done clinically with actual patients.

  • PDF

Water Saving Irrigation Point in Cucumber Cultivation under Greenhouse (시설재배 오이의 물 절약 관개시점 구명)

  • Jeon, Sang-Ho;Hur, Seung-Oh;Ha, Sang-Keun;Jun, Hyun-Jung;Han, Kyung-Hwa;Cho, Hee-Rae;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.540-545
    • /
    • 2010
  • This study was conducted to investigate effects of irrigation points on cucumber growth and water saving under greenhouse. Automatic irrigation system and tensiometers were installed at four plots to measure soil water tension and properties of irrigated water. Each plot was irrigated at different irrigation points; soil water tension of 15, 20, 30, and 40 kPa, respectively. Conventional irrigation plot without tensiometer was also investigated. The total yield and sugar contents of cucumber had no significant differences between plots. However, irrigated water volumes were saved most when irrigation points were 30, and 40 kPa. The two plots of 30, and 40 kPa treatments used about 60% less of irrigated water than the plot of conventional practice did. In conclusion, this research suggested that the optimum irrigation point for cucumber cultivation in greenhouse can be soil water tension of 30 kPa based on the results of overall cucumber quality, and Greenhouse water usage.

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF