• Title/Summary/Keyword: Tensile-shear strength

Search Result 819, Processing Time 0.023 seconds

Analytical Study on the Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.35-44
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load is verified by comparison with reliable experimental results.

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Effect of Tool Plunge Depth on Weldability of Dissimilar Al5083-O/DP590 Friction Spot Joint (이종재 Al5083-O/DP590 마찰교반점용접시 툴의 삽입깊이(Plunge Depth)가 용접성에 미치는 영향)

  • Jeong, Su-Ok;Bang, Han-Sur;Bang, Hee-Seon
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.17-22
    • /
    • 2016
  • In terms of mechanical and metallurgical characteristics, the effect of tool plunge depths(0.2, 0.5, 0.7, 1.0, 1.5mm) on weldability in dissimilar Al5083-O/DP590 friction spot joint has been clarified. From the results, it is found that the stirred nugget was stably formed at a plunge depth of more than 0.7mm, which is caused by improved stirring action against each other material. With increasing a plunge depth, the thickness of intermetallic compound(IMC) layer in Al5083-O/DP590 joint has a tendency to increase. The tensile shear strength reaches to the maximum failure load of 6.5kN at a plunge depth of 0.7mm due to relatively small decrease in the thickness of Al5083-O sheet and relatively minute thickness of IMC layer, compared with those of other plunge depth conditions.

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

A Study on Automotive Head Lamp Design Using Layers Concept and Prototype Production by Welding on Dissimilar Materials (레이어 개념을 이용한 자동차 헤드램프 디자인과 이종재료 접합을 통한 시제품 제작에 관한 연구)

  • Lee, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.108-113
    • /
    • 2010
  • Decreasing products lifecycles and increasing consumers desires for quality and design make the automotive industries try to reduce time for developing new designs. In order to reduce developing time, I have designed head lamps, which are really important to have an effect on brand identities and images, using layers concept that is one of the international automotive design trends by alias and photoshop, and produced prototype by RP. To assemble the produced prototype to the body and manufacture the frame to exterior modelling efficiently, I have studied on joining dissimilar materials of aluminum alloy that can make the prototype lighter and stainless steel, which is good for corrosion resistance by using laser beam. These materials were welded for finding the optimum joining condition and evaluating the soundness of joining zone. The joining was performed under the condition of laser power 500, 550, 575, 600W and 11~14Hz. In this study, the suitable joining condition between aluminum alloy (Al 2024) and stainless steel (STS 304) can be obtained at the laser power 575W and frequency 12Hz.

Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가)

  • Lee, Sang-Il;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.258-262
    • /
    • 2001
  • The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

  • PDF

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

A Study of Real-Time Weldability Estimation of Resistance Spot Welding using Fuzzy Algorithm (퍼지 알고리즘을 이용한 저항 점 용접의 실시간 품질 평가 기술 개발에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.76-85
    • /
    • 1998
  • The resistance spot welding process has been used for joining the sheet metal in automotive engineering. In the resistance spot welding, the weld quality is very important, because the quality of weld is one of the most important factors to the automobile quality. The size of he molten nugget has been utilized to estimate the weld quality. However, it is not easy to find the weld defects. For weldability estimation, we have to use the nondestructive method such as X-ray or ultrasonic inspection. But these kinds of approaches are not suitable for detecting the defects in real time. The purpose of this study is to develop the real time monitoring of the weld quality in the resistance spot welding. Obtained data were used to estimate weldability using fuzzy algorithm. It is sound that this monitoring and estimation system can be useful to improve the weld quality in the resistance spot welding process and it is possible to estimate the weldability in real time.

  • PDF

A Study on the Spot Weldability of Sn-37%Pb Coated Cu-sheet (Sn-37%Pb solder를 도금한 Cu 박판의 점 용접성에 관한 연구)

  • 박창배;김미진;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.45-50
    • /
    • 1999
  • Copper has been widely used for the electronic parts, and especially spot welded one for the leads of condenser or resistor. However, copper is generally hard to be spot welded because of its low electrical resistivity. For this experiment, Sn-37%Pb solder which has relatively higher resistivity was coated on the Cu-sheet to improve the spot weldability of copper. As the experimental variables welding pressure was varied from 100 to 200kgf, welding time from 20 to 50ms, and welding current from 100 to 2500A. Experimental results showed that the solder coated Cu-sheet can be spot welded under the conditions of 400~2200A welding current, 100~200kgf pressure and 20-50ms welding time. The tensile shear strength of the spot welded joint increased with welding current up to the critical current, and after the critical value decreased with current.

  • PDF