• Title/Summary/Keyword: Tensile-Shear Test

Search Result 518, Processing Time 0.03 seconds

Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model (접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용)

  • Hwang, B.N.;Lee, C.J.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Strength Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 특성)

  • Jin, Guang-Ri;Shin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.844-851
    • /
    • 2009
  • A soil mixture with low permeability and bentonite as an additive has been highly utilized as a cutoff material in landfills, banks, and dams. Even though it is anticipated that the water can seep through shear failures in the filter layer due to external loads and embankment loads during construction, usually only the coefficient of permeability of the soil mixture is considered rather than the changes of strength from the different amounts of additives. Therefore, the amount of bentonite was changed between 0%~4% in the soil mixture of the bed material to conduct a series of unconfined compressive strength, tensile strength, and shear strength tests on a specimen in order to study the characteristics of the strength. In the result, the unconfined compressive and tensile strength were increased along with the increased amount of bentonite in the low water content; however, the tensile strength in the consolidated-drained shear test generally showed similar values without significant changes.

  • PDF

Evaluation of Friction Spot Joining Weldability of Al Alloys for Automotive (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 접합성 평가)

  • Cho, Hyeon-Jin;Kim, Heung-Ju;Cheon, Chang-Keun;Chang, Woong-Seong;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.50-55
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, effects of joining parameters such as tool rotating speed, plunging depth, and joining time on the joints properties were investigated. A wide range of joining conditions could be applied to join Al alloys for automobile without defects in the weld zone except for certain welding conditions with a lower heat input. For sound joints without defects, tensile shear strength of joints was higher than acceptable criteria of tensile shear strength of resistance spot welded joints for aluminum.

Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(I) - Effects of AI Coating Weight on Weld Strength - (Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(I) - 알루미늄 도금부착량이 용접부 강도에 미치는 영향 -)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Ki-Chol
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • Laser weldability of the aluminized steel for the full penetration welding will be described in this paper. We focused on the effect of Al coating conditions on weld strength. For these objectives, aluminized steel sheets that have various thickness and coating weight were prepared for laser welding. And then, tensile-shear and hardness test were carried out. At the same time, Al contents in weld after laser welding were analyzed and their correlations with mechanical properties were investigated. Besides, as removing partially coating layer, weldability has been investigated according to the position of coating layer. As a result of this study, tensile-shear strength was decreased with increasing Al contents in weld, and Al of coating layer caused grain growth.

Shear Strength of lnconel Tube Welded with Pulsed Nd:YAG Laser (펄스형 Nd:YAG레이저로 용접된 Inconel Tube의 전단강도)

  • Chang, W.;Kim, J. D.;Chung, J. M.;Kim, C. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.125-128
    • /
    • 1995
  • The remote sleeve repair-welding technology using the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in the nuclear power plant has been developed. The laser welding has many advantages on deep penetration depth and narrow heat affect zone(HAZ). The inconel 600 tube and inconel 690 sleeve used high temperature and high pressure service have been welded as round lap welds. It is found that the relation between the connection width and welding parameters. It is found that the shear strength in proportion to the connection width by conducting tensile-shear tests.

  • PDF

Pullout Test of Headed Reinforcing Bar in RC or SFRC Members with Side-Face Blowout Failure

  • Lee, Chang-Yong;Kim, Seung-Hun;Lee, Yong-Taeg
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this study, side-face blowout failure strength of high strength headed reinforcing bar, which is vertically anchoring between RC or SFRC members, is evaluated throughout pullout test. The major test parameters are content ratio of high strength steel fibers, strength of rebar, length of anchorage, presence of shear reinforcement, and the side concrete cover thickness planned to be 1.3 times of the rebar. In pullout test, tensile force was applied to the headed reinforcing bar with the hinged supports positioned 1.5 and 0.7 times the anchorage length on both sides of the headed reinforcing bar. As a result, the cone-shaped crack occurred where the headed reinforcing bar embedded and finally side-face blowout failure caused by bearing pressure of the headed reinforcing bar. The tensile strength of specimens increased by 13.0 ~26.2% with shear reinforcement. The pullout strength of the specimens increased by 3.6 ~15.4% according to steel fiber reinforcement. Increasing the anchoring length and shear reinforcement were evaluated to reduce the stress bearing ration of the total stress.

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.

Material Development of Eco Water Tank with High Density Polyethylene and Low-temperature Concrete (친환경 저수조를 위한 고밀도 폴리에틸렌과 저열성 콘크리트 합성재료 개발)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • The purpose of this study is to evaluate the new eco water tank which is made of high density polyethylene and concrete with low temperature cement. The strength and failure mode of eco water tank was examined through tensile test with mixture of concrete and HDPE, temperature monitoring for various kind of concrete, admixture contains etc. The strength and failure mode were examined through tensile test with mixture of concrete and HDPE, temperature monitering for different kinds of concrete, strength test with different admixtures etc. It was found that shear connector between concrete and HDPE effects significantly contributed to the combined structures. ㄱ type shear connector results in tensile strength of up to 40% compared to that of V type shear connector. Based on test result, the new eco composite tank improved the stability and safety the old one and demonstrated the applicability and capability.