• Title/Summary/Keyword: Tensile test

Search Result 4,151, Processing Time 0.035 seconds

A Study on Improvement of Thermal and Adhesion Properties of Stone/Wood Composites for Stone Bed using CNT-epoxy Adhesive (CNT/Epoxy 접착제를 이용한 돌침대용 석재/목재 복합재의 열적특성 및 접착특성 개선 연구)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Moon, Sun-Ok;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.276-281
    • /
    • 2016
  • Improvement of the thermal and adhesion properties of stone/wood composites was studied. Tensile test was performed for wood and stone to know the basic mechanical properties. Real-time temperature of stone and wood was measured when stone and wood was heated. To compare thermal transfer properties of stone/wood composites, two types of specimens were tested: one was stone upper whereas another was wood upper. Real time temperature measurement and lap shear test were performed to know thermal and adhesion properties by using CNT-epoxy adhesive in which CNT was dispersed in epoxy adhesive uniformly. The thermal transfer property was better for the wood upper case than stone upper case. Adding CNT improved the heat transfer as well as mechanical properties including lap shear strength.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

Prediction of Thermal Fatigue Life of Engine Exhaust Manifold under Thermo-mechanical Cyclic Loading (열적-기계적 반복하중을 받고 있는 엔진 배기매니폴드의 열피로 수명예측)

  • Choi, Bok-Lok;Chang, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.911-917
    • /
    • 2010
  • In this study, we performed structural and fatigue analyses of the engine exhaust manifold that was subjected to thermo-mechanical cyclic loading. The methodologies used in this study are based on an approach in which the techniques for modeling the exhaust system, the temperature-dependent properties of the material, and thermal cyclic loading are taken into consideration and a reliable strategy is adopted for failure prediction. An application example shows that at an elevated temperature, considerable compressive plastic deformation is observed and that at a low temperature, tensile stresses remain in those parts of the test exhaust manifold where failure is observed. In order to predict fatigue life, mechanical damage is determined on the basis of the stress.strain hysteresis loops by using the classical Coffin.Manson equation and by adopting a method in which the dissipated plastic energy is taken into consideration.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Heat and Crack Resistance of Natural Rubber(NR) Compounds According to the Type of Antioxidants (산화방지제 종류에 따른 천연고무 배합물의 내열성 및 내크랙성)

  • Roh, Jong-Dae;Shin, Jun-Geun;Kim, Jin-Tae;Hur, Jae-Young;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 1999
  • In this study, heat and crack resistance of natural rubber (NR) compounds was evaluated. To prevent the effects of the crosslinking system, a conventional vulcanization system was selected, where the accelerator/sulfur ratio was fixed to 0.25. Vulcanizates containing phenylenediamine showed high tensile strength and tear strength compared to other vulcanizates because phenylenediamine can cause additional crosslinking and high dispersion In the vulcanizates. In the pure shear test, vulcanizates containing phenylenediamine showed an excellent tearing energy which was due to the irregular crack path, and showed excellent heat and crack resistance which was also due to the good dispersity of antioxidant and additional crosslinks in the rubbber vulcanizates.

  • PDF

Effects of Shear Reinforcements on the Reinforced High-Strength Lightweight Concrete Beams (고강도 경량 철근콘크리트보의 전단보강 효과)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Ahn, Jong-Mun;Choi, Myung-Shin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • In this study, fifteen reinforced high-strength lightweight concrete(HLC)beams were tested to investigate shear behavior of specimens according to shear reinforcement ratio. Test variables are shear span to effective depth ratio(a/d=2.5, 3.5, 4.5) and shear reinforcement ratio(0~1.0${\rho}_{v,ACI}$). Concrete compressive strength and tensile steel reinforcement ratio are constantly 439kg/$cm^2$ and 0.0203, respectively. Test results for the HLC beams showed that ACI code equation underestimates the shear strength of concrete($V_c$), and overestimates the shear strength of shear reinforcements($V_s$). It is revealed that the effectivenesses of shear reinforcements of reinforced HLC beams are lower than those of normal weight concrete beams. Then, the shear strengths of shear reinforcements are increased in proportion not to first degree of shear reinforcement ration but to square root of them.

Structural Behavior of Concrete Girder Continuous Bridges Strengthened with External Tendons Considering the Efficiency at Negative Moment Region (부모멘트부의 효율성을 고려한 외부강선으로 보강된 콘크리트 거더 연속교의 거동)

  • Han, Man-Yop;Cho, Byeong-Du;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.555-564
    • /
    • 2013
  • An effective method was proposed in this study which can improve the strengthening effect of continuous girder bridges by external tendons. The improvement of the proposed strengthening method in comparison with conventional methods was analyzed by applying equivalent load concept. In order to verify the strengthening effect, the enhancement of load-carrying capacity achieved by external prestressing was investigated through the test of continuous beams that were or were not strengthened by the external prestressing. The continuous beams were fabricated by making the deck slab continuous according to general construction practice of an actual concrete girder bridge. The test results showed that the deflections and strains of the strengthened beam were significantly reduced when comparing with those of the non-strengthened beam for the same level of external loads, and the stiffness of the member increased by strengthening. In particular, it was verified that the proposed method can effectively reduce the tensile stresses of the deck caused by negative moment at the intermediate supports of a continuous bridge.

Bearing Capacity of Shallow Foundation on Geosynthetic Reinforced Sand (토목섬유로 보강된 얕은기초 모래지반의 지지력)

  • Won Myoung-Soo;Ling Hoe I.;Kim You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.107-117
    • /
    • 2004
  • A series of model tests were conducted to investigate how the number of reinforcement layers, stiffnesses, types of reinforcement material and buried depth of a flexible pipe can affect bearing capacity-settlement curve at a loose sand foundation. In the test results, whereas the type of failure in unreinforced sand was local shear, the type of failure, for model tests with more than 2 reinforcement layers in loose sand, was general shear: The number of the optimum reinforcement layers was found to be two: Stiffness and type of reinforcement were more important than the maximum tensile strength of reinforcement in improving bearing capacity. When the depth of buried pipe from the sand surface was less than the width of the footing, test results showed that both bearing capacity and ultimate bearing capacity of buried pipe in unreinforced sand significantly decreased, and the type of failure in the reinforced sand changed from general shear to local shear.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

COMPARATIVE STUDY ON THE BOND STRENGTH OF CEMENTS BETWEEN PFM COPING AND VARIOUS CORES (도재전장관용 Coping과 수종 Core간의 시멘트 결합력에 관한 비교 연구)

  • Paik, Sung-Ki;Chang, Wan-Shik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 1982
  • An in vitro study was conducted to compare the bond strength of cements between Verabond coping and various cores. Fifty-four idential cores simulating maxillary central incisor prepared for PFM crowns were made. Eighteen samples were made with 20K cast gold, eighteen with Verabond, and eighteen with Adaptic. Samples were randomly divided into three groups, each consisting of six 20K cast gold, six verabond, and six Adaptic samples. The first group was cemented with zinc phosphate cement, the second group with poly-carboxylate cement, and the third group with glass ionomer cement. Constant finger pressure was applied for cementation. The sample were then stored at $37^{\circ}C$ in distilled water bath for 24 hours. The tensile strength test was performed on an Instron Universal test machine with crosshead speed of 0.05cm/min and the results compared statistically. Results of the study showed that: 1. A significant difference of bond strength was observed with different types of dental cements and core materials. 2. With gold core, zinc phosphate cement was stronger than both the polycarboxylate cement and glass ionomer cement, which did not differ in bond strength. 3. With base-metal core, zinc phosphate cement showed the highest bond strength and was followed by polycarboxylate cement and glass ionomer cement. 4. With composite resin core, zinc phosphate cement showed the highest bond strength and was followed by glass ionomer cement and polycarboxylate cement. 5. The base-metal core (Verabond core) privided the highest retention of all core materials.

  • PDF